1.Therapeutic Effects of Fibroblast Growth Factor-21 on Diabetic Nephropathy and the Possible Mechanism in Type 1 Diabetes Mellitus Mice
Wenya WENG ; Tingwen GE ; Yi WANG ; Lulu HE ; Tinghao LIU ; Wanning WANG ; Zongyu ZHENG ; Lechu YU ; Chi ZHANG ; Xuemian LU
Diabetes & Metabolism Journal 2020;44(4):566-580
Fibroblast growth factor 21 (FGF21) has been only reported to prevent type 1 diabetic nephropathy (DN) in the streptozotocin-induced type 1 diabetes mellitus (T1DM) mouse model. However, the FVB (Cg)-Tg (Cryaa-Tag, Ins2-CALM1) 26OVE/PneJ (OVE26) transgenic mouse is a widely recommended mouse model to recapture the most important features of T1DM nephropathy that often occurs in diabetic patients. In addition, most previous studies focused on exploring the preventive effect of FGF21 on the development of DN. However, in clinic, development of therapeutic strategy has much more realistic value compared with preventive strategy since the onset time of DN is difficult to be accurately predicted. Therefore, in the present study OVE26 mice were used to investigate the potential therapeutic effects of FGF21 on DN. Four-month-old female OVE26 mice were intraperitoneally treated with recombinant FGF21 at a dose of 100 µg/kg/day for 3 months. The diabetic and non-diabetic control mice were treated with phosphate-buffered saline at the same volume. Renal functions, pathological changes, inflammation, apoptosis, oxidative stress and fibrosis were examined in mice of all groups. The results showed that severe renal dysfunction, morphological changes, inflammation, apoptosis, and fibrosis were observed in OVE26 mice. However, all the renal abnormalities above in OVE26 mice were significantly attenuated by 3-month FGF21 treatment associated with improvement of renal adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) activity and sirtuin 1 (SIRT1) expression. Therefore, this study demonstrated that FGF21 might exert therapeutic effects on DN through AMPK-SIRT1 pathway.
2.Study on the stability and H+ permeable membrane properties of polymersomes
Kangqing BIAN ; Lingyi GUO ; Wenya CHI ; Yuan YU
Journal of Pharmaceutical Practice and Service 2024;42(1):12-17
Objective To prepare polymersomes (PSs) by block copolymers,evaluate their membrane structural stability,investigate the H+ transmembrane permeability of PSs and the impact of 1,4-dioxane and establish a foundation for drug encapsulation within polymersomes. Methods PSs were self-assembled by a block copolymer, PEG-PLGA, in a solvent solution. The pH-sensitive fluorescence probe HPTS was employed to examine the H+ transmembrane properties of PSs and compare them with PSs prepared using PBD-b-PEO, PS-b-PEO, and liposomes. The effect of varying concentrations of 1,4-dioxane on PSs’ membrane permeability properties was also investigated. Results The fluorescence excitation spectra of HPTS exhibited pH dependency, which showed a linear correlation between extravesicular H+ concentration and t1/2. Significant differences were observed in the membrane permeability capabilities of PSs with different membrane wall thicknesses. Compared to liposomes, the H+ transmembrane coefficients for the three types of PSs were reduced by 2.39×104, 3.38×104, and 5.48×108 times, respectively. 1,4-dioxane was found to modulate the permeability of PSs’ membranes, which displayed a concentration-dependent relationship. Conclusion PSs exhibited significantly lower membrane permeability compared to liposomes, indicating superior stability. 1,4-dioxane was identified as a modulator of PSs’ permeability, which offered potential for drug loading and release within PSs.
3.Construction of albumin nanoparticles loading PROTAC and its inhibition effect on NAD+ in glioma cells
Hongbo WANG ; Lingyi GUO ; Wenya CHI ; Kangqing BIAN ; Wenbo ZHOU ; Yuan YU
Journal of Pharmaceutical Practice 2023;41(10):594-599
Objective To prepare and optimize the formulation of Albumin nanoparticles loading PROTAC molecule and observe the inhibition effect of nanoparticles on the proliferation and NAD+ metabolism of glioma cells. Methods Albumin nanoparticles loading NPT-B2 were prepared and characterized with a thermal driving method, and the prescription was optimized. An HPLC method was established to determine the content of NPT-B2. The proliferation inhibition of NPT-B2 and B2-BSA-NPs on U251 cells were investigated by the CCK8 method, and the degradation effects of NPT-B2 and B2-BSA-NPs on NAMPT in glioma cells were investigated by western blotting. Results The HPLC method was stable, with good linearity, precision, and recovery rate. The nanoparticles had a particle size of about 55.48 nm, a potential of about −12.9 mV, an encapsulation rate of about 94.74%, and a drug loading amount of about 8.61%. The IC50 of NPT-B2 on glioma cells was 61.16 nmol/L, which had a degradation effect on NAMPT. The IC50 of B2-BSA-NPs on glioma was 41.21 nmol/L, which had a very significant degradation effect on NAMPT. Conclusion Albumin nanoparticles loading PROTAC molecules were constructed. The prescription was optimized to improve the drug encapsulation rate, and the low water solubility of PROTAC molecule was improved, which had a significant inhibitory effect on the proliferation and NAD+ energy metabolism of glioma cells.