1.Changes of Chemotactic Factor Monocyte Chemotactic Protein-1 (MCP-1) Expression in Patients with Congestive Heart Failure
Wenmeng WANG ; Kaihua HU ; Jing HUANG
Journal of Chinese Physician 2001;0(04):-
Objective To explore the role of ? chemotactic factor- MCP-1 in the pathogenesis of congestive heart failure by detecting its expression changes.Methods PBMCs were collected from 25 patients with congestive heart failure and 10 healthy controls. RT-PCR was used to detect the mRNA expression of MCP-1 in PBMCs. Correlation of the clinical indexes of heart failure patients with to their MCP-1 mRNA expression levels were analysed.Results The expression level of MCP-1 in the heart failure patients was higher significantly than that of controls (P
2.Cyclic fatigue performance of different types of stainless steel root canal files
Xin HU ; Lei WANG ; Qian ZHANG ; Jia NING ; Wenmeng WU
Chinese Journal of Tissue Engineering Research 2017;21(26):4125-4130
BACKGROUND: Root canal files fracture is a kind of common oral clinical complications. Therefore, it is of clinical importance to study the cyclic fatigue of different types of stainless steel root canal files.OBJECTIVE: To explore the effect of the bending angle and cross-sectional area of root canal instruments on cyclic fatigue of stainless steel files.METHODS: Thirty 25# stainless steel K files (25 mm in length) were selected, the same to 30# and 35#. And these three kinds of files were respectively randomized into three groups (n=10 per subgroup). In the nine subgroups, the files were placed into self-made root canals at the bending angle of 45°, 60°, 90°, and driven by a 16:1 reducer (350 r/min).Fracture time in each subgroup was recorded and converted into the number of rotations. The microstructure of the fracture end of the files was observed under scanning electron microscope. Fractured files were collected and the crack tip length was measured by an electronic caliper.RESULTS AND CONCLUSION: At the same bending angle, the number of rotations resulting in file fracture was significantly reduced with the increasing of the cross-sectional area of the files (P < 0.05). When the type and cross-sectional area were same, the number of rotations resulting in file fracture was significantly reduced with the increasing of the bending angle of the root canals (P < 0.05), indicating a reduction in the cyclic fatigue performance of the files. Toughness fracture occurred in all the files, and circular or oval roughness nests with different sizes and microcavities formed on the fracture surface. In addition, brittle surfaces could be detective between the roughness nests. The diameter of roughness nests was gradually increased with the increasing of the bending angle of the root canals. For 30# and 35# files, the number of brittle surfaces was gradually increased with the increasing of the bending angle of the root canals. For 25# files, the crack tip length was gradually decreased with the increasing of the bending angle of the root canals, but there was no significant difference (P > 0.05). For 30# and 35# files, the crack tip length was significantly shortened with the increasing of the bending angle of the root canals (P < 0.05). But there were no significant changes in the 35#-60° and 35#-90° groups (P=0.095). At the same bending angle, there were no regular changes in the crack tip length in the different types of files. In conclusion, with the increasing of the cross-sectional area, the cyclic fatigue performance of the files with the same length and taper is reduced and the files become easy to be fractured; with the increasing of the bending angle of the root canals, the files with the same types are apt to be fractured near the root tip, indicating the shorter length of the crack tip indicates the more difficulty in the removal of the broken files.
3.Application of single-cell RNA sequencing technology in Parkinson's disease
Ziyu LIU ; Dandan GENG ; Runjiao ZHANG ; Qing LIU ; Yibo LI ; Hongfang WANG ; Wenmeng XIE ; Wenyu WANG ; Jiaxin HAO ; Lei WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):193-201
BACKGROUND:Parkinson's disease has the main pathological changes in the midbrain,especially in the dense substantia nigra,leading to impaired motor and non-motor function in patients.At present,research is limited by cellular heterogeneity,and its pathogenesis still needs to be further elucidated.In recent years,single-cell RNA sequencing(scRNA-seq)has gradually been applied in neurodegenerative diseases,which is of great significance for understanding intercellular heterogeneity,disease development mechanisms,and treatment strategies. OBJECTIVE:To review the research progress of scRNA-seq technology applied to Parkinson's disease in recent years,providing a theoretical basis for the application of scRNA-seq in the treatment and diagnosis of Parkinson's disease. METHODS:The first author used a computer system to search for relevant literature in the CNKI,WanFang,PubMed,and Web of Science databases,with the Chinese search terms"single-cell RNA sequencing,Parkinson's disease,cell heterogeneity,cell subtypes,dopaminergic neurons,glial cells"and English search terms"single-cell RNA seq,Parkinson disease,heterogenicity,subtypes,dopaminergic neurons,glial cells."71 articles were ultimately included for review and analysis. RESULTS AND CONCLUSION:(1)scRNA-seq is a high-throughput experimental technique that utilizes RNA sequencing at the single-cell level to quantify gene expression profiles in specific cell populations,revealing cellular mysteries at the molecular level.Compared with traditional sequencing techniques,scRNA-seq technology is used to reveal the diversity of cell types and changes in specific gene expression in complex tissues under various physiological and pathological conditions through automatic clustering analysis of cell transcriptome.(2)By using scRNA-seq,the development process of dopaminergic neurons and the unique functional characteristics of various cell subtypes are elucidated,in order to better understand potential therapeutic molecular targets.(3)The use of scRNA-seq analysis has improved our understanding of the response of Parkinson's disease glial cells,enabling us to comprehensively map and characterize different cell type populations,identify specific glial cell subpopulations related to neurodegeneration,and draw valuable single cell maps as reference data for future research.(4)The application of scRNA-seq to detect embryonic mice and stem cells will help improve the in vitro differentiation protocol and quality control of cell therapy,as well as evaluate the overall cell quality and developmental stage of dopaminergic neurons derived from stem cells.