1.The research of the influence of Pingyangmycin on c-myc and Ras-P21 protein expression in penile cancer
Zhichao WANG ; Hongshuang DAI ; Wenlong LIU ; Xiaozhong LI ; Zhongjie QIAO
Practical Oncology Journal 2014;(5):406-409
Objective To evaluate the influence and significance of Pingyangmycin chemotherapy on the c-myc and Ras-P21 protein expression in penile cancer .Methods A total of 100 penile squamous cell carci-noma cases was retrospectively studied and divided into two groups .Data were obtained from 1995 to 2005 .In the chemotherapy group ,50 cases of patients were selected to perform preoperative chemotherapy before surgery .The patients were treated by Pingyangmycin .After 7 times of medication ,partial excision of penis plus improved ingui-nal lymph node dissection was performed .In the control group ,50 cases of patients were selected for partial exci-sion of penis plus improved inguinal lymph node dissection directly without any pre -operative chemotherapy .All pathology specimens were detected of c -myc and Ras-P21 protein expression by immunohistochemical staining assay.Theχ2 test was used for the statistical analysis .Results In chemotherapy group,the positive expression rates of c-myc and Ras-P21 were 30%,27%,respectively.However,in control group,the positive expression rate of c-myc,Ras-P21 were 52%,48%,respectively.By theχ2 test,the expressive differences of c -myc,Ras-P21 positive expression rate between chemotherapy group and control group were all significant (P<0.05). Conclusion The protein expressions of c -myc and Ras-P21 is significantly decreased in the tissue of Pingy-angmycin chemotherapy of penile cancer .
2.Angiodynamic and optical coupling analysis of skin tissue model under finite pressure.
Hetong ZHAO ; Liang ZHOU ; Zhaohui LIU ; Wenlong QIAO ; Xiaoxiao SUN ; Le JIANG ; Yuanyuan LYU
Journal of Biomedical Engineering 2022;39(3):527-536
The pulse amplitude of fingertip volume could be improved by selecting the vascular dense area and applying appropriate pressure above it. In view of this phenomenon, this paper used Comsol Multiphysics 5.6 (Comsol, Sweden), the finite element analysis software of multi-physical field coupling simulation, to establish the vascular tissue model of a single small artery in fingertips for simulation. Three dimensional Navier-Stokes equations were solved by finite element method, the velocity field and pressure distribution of blood were calculated, and the deformation of blood vessels and surrounding tissues was analyzed. Based on Lambert Beer's Law, the influence of the longitudinal compression displacement of the lateral light surface region and the tissue model on the light intensity signal is investigated. The results show that the light intensity signal amplitude could be increased and its peak value could be reduced by selecting the area with dense blood vessels. Applying deep pressure to the tissue increased the amplitude and peak of the signal. It is expected that the simulation results combined with the previous experimental experience could provide a feasible scheme for improving the quality of finger volume pulse signal.
Computer Simulation
;
Fingers
;
Finite Element Analysis
;
Skin
;
Software
3.Effects of Dendrobium officinale Polysaccharides on Gene Expression Profile of HUVEC
Ruijun WANG ; Lan XIE ; Juan FENG ; Wenlong ZHAO ; Zhifang GUO ; Liansheng QIAO ; Weifang SONG
China Pharmacy 2019;30(6):801-806
OBJECTIVE: To investigate the effects of Dendrobium officinale polysaccharides on gene expression profile of HUVEC. METHODS: HUVEC was selected as objects. MTS method was used to detect the effects of different doses of D. officinale polysaccharides (50, 100, 200, 400, 800 μg/mL) on the proliferation activity of HUVEC. The growth inhibitory concentration of 30% cells (IC30) was calculated to screen the dose of follow-up tests. cDNA microarray assay was used to detect the changes of gene expression profile for HUVEC after treated with D. officinale polysaccharides for 24 h, so as to screen differentially expressed genes. GO enrichment analysis and KEGG pathway enrichment analysis were performed for top 5 differentially expressed genes by using DAVID bioinformatics resource database. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to validate the results of microarray detection with immunity-related differentially expressed genes as objects. RESULTS: After treated with 100, 200, 400, 800 μg/mL D. officinale polysaccharides, survival rate of HUVEC were decreased significantly (P<0.05 or P<0.01). IC30 value was 408 μg/mL. After treated with 400 μg/mL (by IC30) D. officinale polysaccharides, there were 91 differentially expressed genes in HUVEC cells, of which 84 were up-regulated and 7 were down-regulated. Top 5 genes of up-regulated and down- regulated expression were SELE, CCL2, CXCL6, IL8, ICAM1 as well as VWCE, CPT1A, CLU, CCL14, CINS4, which may be mainly associated with immune conditions and inflammatory responses. The differentially expressed genes mainly distributed in extracellular domain, and were enriched in biological processes such as production and response of cytokines and stimulus response, and played molecular functions such as chemokine and its receptor activity. The up-regulated genes as SELE, ICAM1 and CXCL2 were mainly enriched in TNF signaling pathway, influenza A (H1N1), herpes simplex virus infection and other pathways. The down-regulated gene CCL14 was mainly enriched in chemokine signaling pathway. Results of qRT-PCR validation tests showed that relative expression of ICAM1 was increased significantly, while that of CCL14 was decreased significantly (P<0.05), which was in agreement with microarray detection results. CONCLUSIONS: After treated with D. officinale polysaccharides, the expression of 91 genes in HUVEC cells are different significantly, mainly being up-regulated. The differentially expressed genes may participate in immune regulation through TNF signaling pathway, influenza A (H1N1) and herpes simplex virus infection.