1.Discussion on three-level prevention and disease management of senile dementia from the perspective of TCM constitution
Wenle LI ; Yuyang CAI ; Shunqi CHEN ; Zhuqing LI ; Wei WEI ; Miao QU ; Xiaoshan ZHAO ; Minghua BAI ; Ji WANG
International Journal of Traditional Chinese Medicine 2023;45(10):1207-1211
Senile dementia is a disease that gradually develops with age. At present, the etiology, pathogenesis and treatment of senile dementia cannot be completely determined clinically. Therefore, it is extremely necessary to prevent and treat senile dementia from prevention and disease management. For the non-ill people, this article analyzed the susceptible groups of senile dementia from the perspective of TCM constitution, combined with the current prevention plan of Alzheimer's disease, from the aspects of examination, nutritional supplementation, adjustment of work and rest, exercise, etc., early physical fitness prevention targeting populations at different stages was conducted; the early onset of senile dementia is not obvious, and the early prevention of senile dementia can be carried out from various aspects in combination with constitution identification and inspection of senile dementia; for the exact sick population, disease management guidance can be added on the basis of the above aspects to provide definite and feasible recommendations for disease prevention and management of the elderly.
2.Biomechanical Response of Membrane Element and Spring Element for Simulation of Ligament Injury
Haiyan LI ; Xiaoyan WANG ; Shihai CUI ; Lijuan HE ; Wenle LV ; Shijie RUAN
Journal of Medical Biomechanics 2018;33(5):E390-E395
Objective To compare and analyze the effect of membrane element and spring element on biomechanical responses of cervical ligaments. Methods Based on the existing 6-year-old pediatric neck finite element model, the ligaments were simulated by membrane element and spring element, respectively. Then dynamic tensile test of C4-5 vertebrae and tensile test of full cervical spine were conducted. The membrane element model was also used to simulate the bending test, and the simulation results were analyzed. Results In dynamic tensile test of C4-5 vertebral segment, the final failure force of membrane element simulation test and spring element simulation test was 1 207 N and 842 N, respectively, and their difference from the cadaver experiment was 0.6% and 30.6%, respectively. In full cervical tensile test, the difference of peak force from membrane element simulation test and cadaver experiment was 1.8%. The peak force of spring element simulation test was 484 N, and the difference from simulation test and cadaver experiment was large. The simulation result of membrane element bending test was good. Conclusions The spring element had some limitations in force simulation. The membrane element had higher biofidelity and could reflect the biomechanical response of the ligaments.
3.Reverse and Optimization for Constitutive Parameters of Adipose Tissues Based on Feasible Direction Method
Shihai CUI ; Hengkuan WANG ; Haiyan LI ; Lijuan HE ; Wenle LÜ
Journal of Medical Biomechanics 2021;36(5):E732-E737
Objective To study the constitutive model of adipose tissue at medium strain rate and its parameter inversion. Methods Based on experiments of adipose tissue mechanical properties, the compression experiment of adipose tissues was reconstructed by finite element method, and the parameters for characterizing constitutive models of adipose tissues were screened. Combined with the method of feasible direction (MFD) in optimization method, the reverse calculation for parameters of fat tissue constitutive model at medium strain rate was conducted. ResultsCompared with Ogden constitutive model, the viscoelastic constitutive model was more suitable for characterizing the mechanical response at medium strain rate (260 s-1). The parameters of the constitutive model suitable for simulation were obtained using the reverse method. Conclusions The viscoelastic constitutive model was more suitable for characterizing the mechanical response at medium strain rate. The results provide references for studying the influence of human adipose tissues on body injury in finite element simulation of vehicle collisions.
4.Transcriptome analysis of Saposhnikovia divaricata and mining of bolting and flowering genes.
Min ZHANG ; Wenle WANG ; Qian LIU ; Erhuan ZANG ; Lijun WU ; Guofa HU ; Minhui LI
Chinese Herbal Medicines 2023;15(4):574-587
OBJECTIVE:
Early bolting of Saposhnikovia divaricata has seriously hindered its medicinal value and sustainable development of resources. The molecular mechanism of bolting and flowering of S. divaricata is still unclear and worth of research. In our study, we explored the transcriptome of the genes related to the bolting and flowering of S. divaricata.
METHODS:
The transcriptome library was constructed, sequenced, assembled and annotated from the bolting and unbolting leaves of S. divaricata by high-throughput sequencing at the bud and flowering stage. Focus on the pathways related to bolting and flowering in plants, and exploring genes. The expression of seven candidate genes was verified by real-time fluorescence quantitative PCR (qRT-PCR).
RESULTS:
Transcriptome results showed that 249 889 422 high-quality clean reads were obtained. A total of 67 866 unigenes were assembled with an average length of 948.1 bp. Trinity de Novo assembly produced 67 866 unigenes with an average length of 948.1 bp. Among 993 differentially expressed genes, 484 genes were significantly up-regulated and 509 genes were down-regulated in the SdM group. A total of 79 GO terms were significantly enriched for differentially expressed genes. KEGG results showed that 11 154 unigenes were enriched in 89 pathways. And 21 candidate genes related to bolting and flowering of S. divaricata were excavated. The qRT-PCR results showed that expression trends of HDA9, PHYB, AP2, TIR1, Hsp90, CaM, and IAA7 were consistent with transcriptomic sequencing results. In addition, RNA-seq had identified 10 740 transcription factors and classified them into 58 families by their conserved domains. Further studies showed that the transcription factors regulating the flowering of S. divaricata were mainly distributed in the NAC, MYB_related, HB-other, ARF, and AP2 families.
CONCLUSION
Based on the results of this study, it was found that the plant hormone signal transduction pathway was one of the decisive factors to control bolting and flowering. Among them, auxin related genes IAA and TIR1 are the key genes in the bolting and flowering process of S. divaricata.
5.Effects of Neck Restrain on Traumatic Brain Injury of Child Occupant During Airbag Inflation
Shijie RUAN ; Haidong WANG ; Haiyan LI ; Wenle LV ; Shihai CUI ; Lijuan HE
Journal of Medical Biomechanics 2019;34(1):E001-E006
Objective To study the effect of neck restrain on traumatic brain injury during airbag inflation in traffic accidents. Methods Based on the previously validated 3-year-old child head finite element (FE) model, the impact on out-of-position (OOP) child occupant during airbag inflation was simulated by FE method, so as to investigate the effects of neck restraint on intracranial response and injury mechanism in traffic accidents. Results The head kinematics with neck restrain was different from that without neck restrain under the impact of airbag inflation. The neck restraint would obviously decrease the maximum Von Mises stress of pediatric brain. When airbag-head distance was 20 cm or 25 cm, the neck restraint would obviously decrease the maximum intracranial pressure. Conclusions Neck restraint had a relatively large influence on pediatric intracranial response. When the FE method is used to predict pediatric craniocerebral injury, consideration of neck restrain on child brain response is necessary.
6. Specification and grade of Saposhnikoviae Radix (Saposhnikovia divaricata)
Lijuan LYU ; Xing LI ; Wenle WANG ; Minhui LI ; Xing LI ; Erhuan ZANG ; Yumei YAN ; Min YANG ; Chunhong ZHANG ; Minhui LI ; Chunhong ZHANG ; Minhui LI
Chinese Herbal Medicines 2022;14(4):543-553
Objective: Saposhnikoviae Radix (Fangfeng in Chinese), the roots of Saposhnikovia divaricata, lacks commodity specification and grade standardization in the current market. This study investigated the existing specifications and grades of Saposhnikoviae Radix to provide a standardized scientific reference for its market use. Methods: Based on a textual research of Chinese herbal medicine from the Han Dynasty to the present, medicinal materials of different specifications and grades obtained from Saposhnikoviae Radix in the main producing areas of China were collected and the markets for these materials were investigated. Field investigations were performed in the major producing areas such as Northeast China, Hebei Province, and Inner Mongolia. Four major Chinese herbal medicine markets in China were investigated. Sensory indices were used to categorize the two specifications (wild and cultivated) according to the shape, color, texture, and cross-section. High-performance liquid chromatography was performed to determine the active components. Vernier calipers and measuring tape were used to measure the diameter and length, respectively, of 41 samples. Using Excel and the R Language software, cluster analysis and descriptive statistical analysis were performed to assist in the application of new specifications and grades based on physical characteristics, pharmacological activity, and chemical composition. Results: The two specifications (wild and cultivated) of Saposhnikoviae Radix were divided into three grades each based on the length and diameter. Prim-O-glucosylcimifugin, 5-O-methylvisamminoside, and the length of Saposhnikoviae Radix can be used as a basis for classifying the commodity specifications and grades. The specifications and grade standards of Saposhnikoviae Radix were established based on the following eight aspects: shape, surface characteristics, texture, cross section, taste, prim-O-glucosylcimifugin content, 5-O-methylvisamminoside content and length. Conclusion: The formulation of this standard stipulates the commodity specification level of Saposhnikoviae Radix. It is also suitable for the evaluation of commodity specifications in the process of production, circulation and use of Saposhnikoviae Radix.
7.ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification.
Wenle YE ; Jinghan WANG ; Jiansong HUANG ; Xiao HE ; Zhixin MA ; Xia LI ; Xin HUANG ; Fenglin LI ; Shujuan HUANG ; Jiajia PAN ; Jingrui JIN ; Qing LING ; Yungui WANG ; Yongping YU ; Jie SUN ; Jie JIN
Frontiers of Medicine 2023;17(4):685-698
Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
beta Catenin/metabolism*
;
Biomarkers, Tumor/metabolism*
;
Cell Line, Tumor
;
Coenzyme A Ligases/metabolism*
;
Leukemia, Myeloid, Acute/metabolism*
;
Lipoylation
;
Prognosis
;
Wnt Signaling Pathway
8.Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis.
Jiansong HUANG ; Xin HUANG ; Yang LI ; Xia LI ; Jinghan WANG ; Fenglin LI ; Xiao YAN ; Huanping WANG ; Yungui WANG ; Xiangjie LIN ; Jifang TU ; Daqiang HE ; Wenle YE ; Min YANG ; Jie JIN
Frontiers of Medicine 2022;16(3):416-428
Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
Acrylamides/pharmacology*
;
Animals
;
Blood Platelets/drug effects*
;
Cell Differentiation
;
Megakaryocytes/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Piperazines/pharmacology*
;
Pyrimidines/pharmacology*
9.A novel and low-toxic peptide DR3penA alleviates pulmonary fibrosis by regulating the MAPK/miR-23b-5p/AQP5 signaling axis.
Dan WANG ; Bochuan DENG ; Lu CHENG ; Jieru LI ; Jiao ZHANG ; Xiang ZHANG ; Xiaomin GUO ; Tiantian YAN ; Xin YUE ; Yingying AN ; Bangzhi ZHANG ; Wenle YANG ; Junqiu XIE ; Rui WANG
Acta Pharmaceutica Sinica B 2023;13(2):722-738
Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.
10.The antimicrobial peptide YD attenuates inflammation via miR-155 targeting CASP12 during liver fibrosis
Zhibin YAN ; Dan WANG ; Chunmei AN ; Hongjiao XU ; Qian ZHAO ; Ying SHI ; Nazi SONG ; Bochuan DENG ; Xiaomin GUO ; Jing RAO ; Lu CHENG ; Bangzhi ZHANG ; Lingyun MOU ; Wenle YANG ; Xianxing JIANG ; Junqiu XIE
Acta Pharmaceutica Sinica B 2021;11(1):100-111
The antimicrobial peptide APKGVQGPNG (named YD), a natural peptide originating from Bacillus amyloliquefaciens CBSYD1, exhibited excellent antibacterial and antioxidant properties in vitro. These characteristics are closely related to inflammatory responses which is the central trigger for liver fibrosis. However, the therapeutic effects of YD against hepatic fibrosis and the underlying mechanisms are rarely studied. In this study, we show that YD improved liver function and inhibited the progression of liver fibrosis by measuring the serum transaminase activity and the expression of α-smooth muscle actin and collagen I in carbon tetrachloride-induced mice. Then we found that YD inhibited the level of miR-155, which plays an important role in inflammation and liver fibrosis. Bioinformatics analysis and luciferase reporter assay indicate that Casp12 is a new target of miR-155. We demonstrate that YD significantly decreases the contents of inflammatory cytokines and suppresses the NF-κB signaling pathway. Further studies show that transfection of the miR-155 mimic in RAW264.7 cells partially reversed the YD-mediated CASP12 upregulation, the downregulated levels of inflammatory cytokines, and the inactivation of the NF-κB pathways. Collectively, our study indicates that YD reduces inflammation through the miR-155–Casp12–NF-κB axis during liver fibrosis and provides a promising therapeutic candidate for hepatic fibrosis.