1.Correlation of serum S100B, IL-6 and intracranial pressure in patients with severe craniocerebral injury
Haihang ZHOU ; Litao ZHANG ; Jianguo SHEN ; Zhengmin CHU ; Wenlai CHU
Chinese Journal of Biochemical Pharmaceutics 2016;36(12):180-182
Objective To investigate the correlation between serum S100B, IL-6 and intracranial pressure in patients with severe craniocerebral injury.Methods 81 cases of patients with severe brain injury in our hospital from August 2012 to April 2016 were selected,intracranial pressure was monitored immediately after admission to calculate the average daily ICP level ,and venous blood were collected after craniocerebral injury 6,12,24,48, 72 hours.Detection of serum S100B protein and IL-6 levels,and the correlation analysis with the level of intracranial pressure.Results Patients with severe craniocerebral injury S100B levels increased gradually after injury, reached the peak at 24 hours, then decreased gradually; while patients with IL-6 and intracranial pressure after injury gradually increased, the difference was statistically significant in different time points among the S100B,IL-6 and intracranial pressure levels (P<0.05).Conclusion The changes of intracranial pressure after severe craniocerebral injury were proportional to the levels of serum S100B and IL-6,S100B and IL-6 can reflect the changes of intracranial pressure,intracranial pressure changes predicted by S100B plasma concentration in 48 hours were more sensitive than those in the same concentration of IL-6.
3.Effect of hypertonic saline combined with magnesium sulfate on severe craniocerebral injury
Genghuan WANG ; Wenlai CHU ; Zhengmin CHU ; Jianguo SHEN ; Yifei WANG ; Haihang ZHOU ; Jian SHEN ; Litao ZHANG ; Kuncan ZHU ; Heping SHEN
Chinese Journal of Neuromedicine 2019;18(12):1196-1200
Objective To explore the effect of hypertonic saline combined with magnesium sulfate on severe craniocerebral injury.Methods Patients with severe craniocerebral injury admitted to our hospital from September 2017 to February 2019 were selected prospectively.With the informed consent of the patients' families,the patients were divided into control group and experimental group according to the random number table.Patients in the two groups accepted intracranial pressure monitoring;patients in the experimental group additionally accepted magnesium sulfate combined with hypertonic saline for a continuous use of 7 d.Incidences of high intracranial pressure,epilepsy,low intracranial perfusion,cerebral vasospasm,cerebral infarction,and intracranial pressure rebound,total mannitol dosages one week after injury,serum neuron specific enolase (NSE) level,and Glasgow outcome scale (GOS) scores and mortality rate 3 months after injury were analyzed and compared between the two groups.Results A total of 93 patients were enrolled;47 were into the control group and 46 into the experimental group.There were no significant differences in age,gender,Glasgow coma scale (GCS) scores and NSE levels at admission,and percentages of patients accepted craniotomy evacuation of hematoma or bone flap decompression between the two groups (P>0.05).As compared with those in the control group,the total mannitol dosage one week after injury and serum NSE concentration were significantly lower,and GOS scores 3 months after injury in the experimental group were significantly higher(P<0.05).Patients in the experimental group had significantly lower incidences of high intracranial pressure,cerebral vasospasm and intracranial pressure rebound as compared with patients in the control group (P<0.05).Conclusion Hypertonic saline combined with magnesium sulfate can improve the prognoses of severe craniocerebral injury;it has few side effects and is cheap;it might be an effective cerebral protective agent.
4.Mechanism of Renshentang in Treatment of Atherosclerosis Based on Autophagic Effect of TRPV1 on Arterial Smooth Muscle
Yujie QI ; Zhanzhan HE ; Zhen YANG ; Xuguang TAO ; Ce CHU ; Yulu YUAN ; Xiangyun CHEN ; Wei DING ; Peizhang ZHAO ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(12):55-62
ObjectiveTo investigate the mechanism of Renshentang, recorded in Synopsis of Golden Chamber, in the treatment of atherosclerosis (AS) based on the autophagic effect of transient receptor potential vanilloid subtype 1 (TRPV1) on arterial smooth muscle. MethodFourteen SPF-grade 8-week-old male C57BL/6J mice were assigned to the normal group and 70 8-week-old apolipoprotein E knockout (ApoE-/-) mice were assigned to the experimental group. The AS model was induced by a high-fat diet in the mice in the experimental group for eight weeks. The model mice were then randomly divided into model group, low-, medium-, and high-dose Renshentang groups (2.715, 5.43, and 10.68 g·kg-1·d-1), and simvastatin group (0.02 g·kg-1·d-1). Drug treatment lasted eight weeks. Serum was taken and serum total cholesterol (CHO), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured by assay kits to observe the changes in lipid levels in mice. The aorta was stained with hematoxylin-eosin (HE) to observe the overall pathology of the aortic root and oil red O staining was used to detect the lipid deposition in the aortic plaque and calculate the percentage of the aortic root area to the lumen area. The protein expression of TRPV1, adenylate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), autophagy effector-1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3Ⅱ) in mouse aortic tissues was determined by Western blot. ResultCompared with the normal group, the model group showed increased serum CHO, TG, and LDL-C levels, decreased HDL-C, and increased aortic root plaque area (P<0.01). Compared with the model group, the Renshentang groups showed decreased levels of CHO, TG, and LDL-C in serum (P<0.05, P<0.01), especially in the low- and medium-dose Renshentang groups (P<0.01). Compared with the normal group, the simvastatin group and the Renshentang groups showed reduced aortic root plaque area (P<0.05), especially in the high-dose Renshentang group (P<0.01). Compared with the normal group, the model group showed decreased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05, P<0.01). Compared with the model group, the medium- and high-dose Renshentang groups showed increased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05,P<0.01). ConclusionThe anti-AS effect of Renshentang recorded in Synopsis of Golden Chamber may be achieved by up-regulating TRPV1 expression to restore the level of autophagy mediated by AMPK.
5.Effect and Mechanism of Chinese Medicine in Treatment of Osteoporosis
Yulu YUAN ; Zhen YANG ; Wei DING ; Ce CHU ; Xuguang TAO ; Xiangyun CHEN ; Zhanzhan HE ; Peizhang ZHAO ; Yongqi XU ; Yuxin ZHANG ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):290-298
Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.
6.Mechanism of Zhishi Xiebai Guizhitang in Treating AS Based on Regulation of Cholesterol Metabolism in Foam Cells by TRPA1
Zhanzhan HE ; Zhen YANG ; Xuguang TAO ; Xiangyun CHEN ; Wei DING ; Ce CHU ; Yulu YUAN ; Yuxin ZHANG ; Yongqi XU ; Peizhang ZHAO ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):1-10
ObjectiveTo explore the effect and mechanism of Zhishi Xiebai Guizhitang on the progression of atherosclerosis (AS) mice based on the regulation of cholesterol metabolism in foam cells by transient receptor potential channel ankyrin 1 (TRPA1). MethodThe AS model was established on apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. The mice were randomly divided into low-dose, middle-dose, and high-dose groups of Zhishi Xiebai Guizhitang (2.97, 5.94, 11.88 g·kg-1) and simvastatin group (0.002 g·kg-1), and the drug was administered along with a high-fat diet. C57BL/6J mice were fed an ordinary diet as a normal group. After the above process, the aorta and serum of mice were taken. The pathological changes of the aortic root were observed by hematoxylin-eosin (HE) staining. The lipid plaques in the aorta were observed by gross oil redness. Serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were detected, and the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were detected by enzyme-linked immunosorbent assay (ELISA). Western blot and immunohistochemical method were used to analyze the expression of TRPA1, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and mannose receptor (CD206). ResultFrom the perspective of drug efficacy, compared with the normal group, pathological changes such as plaque, a large number of foam cells, and cholesterol crystals appeared in the aorta of the model group, and the serum levels of TC, LDL-C, IL-1β, and IL-18 were significantly increased (P<0.01). The HDL-C level was significantly decreased (P<0.01), and the CD206 level in aortic tissue was significantly decreased (P<0.01). Compared with the model group, the lipid deposition in the aorta was alleviated in all drug administration groups. In addition, except for the high-dose group of Zhishi Xiebai Guizhitang, all drug administration groups could significantly decrease the levels of TC and LDL-C (P<0.01). In terms of inflammation, except for the middle-dose group of Zhishi Xiebai Guizhitang, the levels of IL-1β and IL-18 were significantly decreased in all drug administration groups (P<0.05). Moreover, Zhishi Xiebai Guizhitang could also up-regulate the levels of CD206, and the difference was significant in the middle-dose and high-dose groups (P<0.05). From the perspective of mechanism, the expression levels of TRPA1, ABCA1, and ABCG1 in the aorta in the model group were lower than those in the normal group (P<0.05). Compared with the model group, all drug administration groups significantly increased the expression of TRPA1 in the aorta (P<0.05), and the expressions of ABCA1 and ABCG1 were increased. The differences in the middle-dose and high-dose groups and the simvastatin group were significant (P<0.05), which was basically consistent with the trend of immunohistochemical results. ConclusionZhishi Xiebai Guizhitang can effectively reduce blood lipid and inflammation levels and inhibit the formation of aortic plaque. The mechanism may be explained as follows: the expressions of ABCA1 and ABCG1 downstream are increased through TRPA1, which promotes cholesterol outflow in foam cells, thereby regulating cholesterol metabolism, intervening in inflammation level to a certain extent, and finally treating AS.
7.Modern Pharmacological Effect of Zhishi Xiebai Guizhitang: A Review
Zhanzhan HE ; Zhen YANG ; Yujie QI ; Xiangyun CHEN ; Ying GENG ; Zhenhong LIU ; Xuguang TAO ; Jing YU ; Kaiyuan ZHANG ; Ce CHU ; Yulu YUAN ; Wenlai WANG ; Hongxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(6):254-259
Zhishi Xiebai Guizhitang is a classical prescription for the treatment of chest impediment with the method of warming Yang. It is included in the Catalogue of Ancient Classical Prescriptions issued by the National Administration of Traditional Chinese Medicine (First Batch), with the effect of activating Yang, dissipating mass, moving Qi and resolving phlegm. Its main symptoms include chest fullness and pain, or even chest pain radiating to the back, wheezing, coughing, shortness of breath, and Qi reversal from the hypochondrium. In modern traditional Chinese medicine, Zhishi Xiebai Guizhitang is clinically used in the treatment of cardiovascular system, digestive system, respiratory system and other diseases, among which coronary heart disease, unstable angina pectoris, myocardial infarction, sinus bradycardia and other cardiovascular diseases have particularly significant effects. This paper reviewed the pharmacological studies of Zhishi Xiebai Guizhitang in the past 10 years. The results showed that each single medicine and the whole prescription alleviated the above cardiovascular diseases to a certain extent, with the pharmacological effects of improving intravascular environment, myocardial ischemia, myocardial ischemia-reperfusion injury, and myocardial hypoxia, anti-inflammation, plaque stabilisation, etc., and the pharmacological mechanism involved the regulation of relevant active substances in vivo as well as related signaling pathways and ion channels, mainly including thromboxane B2 (TXB2), prostacyclin I2(PGI2) and phosphatidylinositol 3-kinases/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathways, and ATP-sensitive potassium channels. In addition, the relationship between the pharmacological effects of some single medicines and transient receptor potential ankyrin 1 (TRPA1) has been reported that TRPA1 is a key to understanding the mechanism of Zhishi Xiebai Guizhitang in treating cardiovascular diseases, which is worth of further study.
8.Traditional Chinese Medicine Intervenes in Atherosclerosis by Regulating TLR/NLRP3 Pathway via TRPV1/TRPA1
Peizhang ZHAO ; Zhen YANG ; Xiangyun CHEN ; Xuguang TAO ; Yujie QI ; Zhanzhan HE ; Ce CHU ; Yulu YUAN ; Wei DING ; Yuxin ZHANG ; Yongqi XU ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(20):247-256
Atherosclerosis is a chronic inflammatory disease caused by lipid accumulation and vascular endothelial dysfunction. The Toll-like receptor (TLR)/nuclear transcription factor-κB (NF-κB) pathway and the NOD-like receptor protein 3 (NLRP3) inflammasome pathway play a proinflammatory role, while the transient receptor potential vanilloid subtype 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) play a protective role in the occurrence of atherosclerosis. We reviewed the relevant studies published in the last 10 years. The results showed that activation of TRPV1/TRPA1 could activate endothelial-type nitric oxide synthase (eNOS) and inhibit the generation of reactive oxygen species (ROS) and cholesterol crystal (CC) to modulate the TLR/NF-κB and NLRP3 inflammasome pathways, thereby inhibiting TLR/NLRP3-mediated inflammatory response. A variety of compound prescriptions and active components of Chinese medicinal materials can activate TRPV1/TRPA1 or its downstream pathway to regulate the TLR/NLRP3 pathway in atherosclerosis. This paper introduces the mechanisms of compound prescriptions and active components of Chinese medicinal materials in regulating the TLR/NLRP3 pathway via TRPV1/TRPA1 in atherosclerosis. This review provides new ideas for the research on the interactions between Chinese medicines in the treatment of atherosclerosis and provides a new strategy for the clinical treatment of atherosclerosis with traditional Chinese medicine.
9.Linggui Zhugantang Treats Chronic Bronchitis in Rats via PLA2-TRPV1/TRPA1 Pathway
Wei DING ; Wenlai WANG ; Zhenhong LIU ; Xiangyun CHEN ; Zhanzhan HE ; Ce CHU ; Yulu YUAN ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Zhen YANG ; Hongxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):1-9
ObjectiveTo study the effect and mechanism of Linggui Zhugantang in treating chronic bronchitis (CB) induced by exposure to cigarette smoke combined with tracheal instillation of lipopolysaccharide (LPS). MethodSixty SPF-grade SD rats were randomly divided into normal, model, dexamethasone (1 mg·kg-1), and high-, medium-, and low-dose (30.06, 15.03, 7.515 g·kg-1, respectively) Linggui Zhugantang groups by the body weight stratification method, with 10 rats in each group. Each group was administrated with 200 μL LPS (1 g·L-1) by tracheal instillation on days 1 and 14, respectively, while the normal group was administrated with an equal volume of normal saline. Except the normal group, the other groups were exposed to cigarette smoke on days 2-13 and 15-30 (10 cigarettes/time/30 min, twice/day) for the modeling of CB. The rats were administrated with corresponding drugs by gavage for 30 consecutive days from day 2 of modeling, and the mental status, behavior, and body weights of the rats were observed and measured. The wet/dry mass ratio (W/D) of the left lung was measured 30 days after modeling. Hematoxylin-eosin staining was employed to observe the pathological changes in the lung and bronchial tissues. The bronchial mucus secretion and goblet cell proliferation were observed by Alcian blue-periodic acid Schiff (AB-PAS) staining. The levels of mucin 5AC (MUC5AC), interleukin (IL)-13, IL-6, and tumor necrosis factor (TNF)-α in the serum were determined by enzyme-linked immunosorbent assay. The expression of phospholipase A2 (PLA2), transient receptor potential vanilloid receptor 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1) in the lung tissue was quantitatively analyzed by immunohistochemistry and Western blot. ResultCompared with the normal group, the model group showcased abnormal mental status and behaviors, bloody secretion in the nose and mouth, the mortality rate of 40%, decreased body weight, severe lung bronchial structure damage, a large number of inflammatory mediators and inflammatory cell infiltration in the tube wall, hyperemia, edema, and fibroplasia, massive proliferation of goblet cells, excessive secretion and accumulation of mucus, stenosis and deformation of the lumen, and aggravation of pulmonary edema (P<0.01). In addition, the model group had higher levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and higher expression of PLA2 in the lung tissue than the normal group (P<0.01). Compared with the model group, the medication groups showed normal mental status and behaviors, reduced mortality rate, stable weight gain, reduced lung and bronchial injuries, decreased goblet cell proliferation and mucus secretion, and alleviated pulmonary edema (P<0.01). Furthermore, Linggui Zhugantang lowered the levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and down-regulated the protein levels of PLA2, TRPV1, and TRPA1 in the lung tissue (P<0.01). ConclusionLinggui Zhugantang can reduce the pulmonary inflammation and airway mucus hypersecretion in the rat model of chronic bronchitis. It may exert the effects of reducing inflammation and resolving phlegm by regulating the PLA2-TRPV1/TRPA1 pathway.