1.Effectiveness and safety of epinephrine and norepinephrine for treating non-variceal upper gastrointestinal bleeding: a meta-analysis
Long GAO ; Chen CHANG ; Wenkang FU ; Wenbo MENG ; Wence ZHOU ; Xun LI
Chinese Journal of Digestive Endoscopy 2020;37(5):348-354
Objective:To systematically evaluate the effectiveness and safety of epinephrine injection and norepinephrine spraying for treating non-variceal upper gastrointestinal bleeding.Methods:Databases including the PubMed, Embase, Cochrane Library, CNKI, CBM, VIP and WanFang Data with the retrieval time from inception to December 2018 were searched to collect the related clinical trials. The references of included studies were also retrieved. Studies were screened, data were extracted, and the risk of bias was assessed by 2 reviewers separately. The meta-analysis was conducted by using RevMan 5.3 software. The grading of recommendations, assessment, development and evaluation (GRADE) quality of evidence system was used to assess the results of meta-analysis.Results:A total of 10 studies involving 884 participants were included. The results showed that compared with the norepinephrine spraying, epinephrine injection was superior in the following aspects with significant differences: the effective rate ( RR=1.21, 95% CI: 1.12-1.30, P<0.001); the one-week recurrent bleeding rate ( RR=0.28, 95% CI: 0.17-0.45, P<0.001); the immediate hemostatic rate ( RR=1.38, 95% CI: 1.25-1.52, P<0.001); and the emergent operation rate ( RR=0.35, 95% CI: 0.19-0.63, P<0.001). Conclusion:Epinephrine injection is more effective and safer for treating non-variceal upper gastrointestinal bleeding in comparison with norepinephrine spraying.
2.The influence of glucose regulatory protein 78 on prognosis and tumor cell proliferation of hepatocellular carcinoma
Haidong MA ; Jie CAO ; Long GAO ; Wenkang FU ; Ningning MI ; Mingzhen BAI ; Yanyan LIN ; Gang SU ; Wen KOU ; Wenbo MENG
Chinese Journal of Digestive Surgery 2021;20(12):1294-1305
Objective:To investigate the influence of glucose regulatory protein 78 (GRP78) on prognosis and tumor cell proliferation of hepatocellular carcinoma.Methods:The experimental study and retrospective cohort study were conducted. Based on hepatocellular carcinoma tissue chip, in vitro culture of Huh7 and Hep3B hepatoma cells and LO2 normal hepatic cell, and combined with immunohistochemical staining, cell transfection, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot detection, cell proliferation experiments, cell clone formation experiments and high-throughput transcription histological analysis, the GRP78 expression in hepatoma cells was analyzed. Huh7 and Hep3B hepatoma cells being transfected with the GRP78 gene-specific shRNA lentiviruses or the negative control shRNA lentivirus were set as the GRP78 gene-specific shRNA lentivirus group and the negative control shRNA lentivirus group respectively. Observation indicators: (1) GRP78 expression in hepatocellular carcinoma tissue and adjacent tissue and its correlation with the clinicopathological characteristics of hepatocellular carcinoma patients; (2) analysis of factors affecting the prognosis of hepatocellular carcinoma patients; (3) effects of inhibiting of GRP78 expression on the proliferation of hepatoma cells; (4) effects of inhibiting of GRP78 expression on the gene and protein expression of p53, p21, CDK2, CDK4, and CDK6 in hepatoma cells; (5) effects of HA15 on the proliferation and the gene and protein expression of p53, p21, CDK2, CDK4, and CDK6 in hepatoma cells. Measurement data of the normal distribution were expressed as Mean± SD, and comparison of groups was conducted using the t test or ANOVA. Repeated measurement data were analyzed using repeated ANOVA. Count data were expressed as absolute numbers, and comparisons between groups was conducted using the chi-square test. COX proportional hazards regression model was used for univariate and multivariate analysis. The Kaplan-Meier method was used to calculate the survival time and draw survival curve, and the Log-rank test was used for generative analysis. Results:(1) GRP78 expression in hepatocellular carcinoma tissue and adjacent tissue and its correlation with the clinicopathological characteristics of hepatocellular carcinoma patients: results of immunohistochemical staining of hepatocellular carcinoma tissue chip showed that GRP78 was low-expressed in 53 cases and high-expressed in 37 cases of the 90 hepatocellular carcinoma tissues. GRP78 was low-expressed in 84 cases and high-expressed in 6 cases of the 90 paracancerous tissues. There was a significant difference in GRP78 expression between hepatocellular carcinoma tissues and paracancerous tissues ( P<0.05). (2) Analysis of factors affecting the prognosis of hepatocellular carcinoma patients: all 90 patients were followed up for 5 to 56 months, with a median follow-up time of 49 months. The median overall survival time and median disease progression-free survival time were 56 months and 53 months in the 53 hepatocellular carcinoma patients with GRP78 as low-expressed, versus 32 months and 19 months in the 37 hepatocellular carcinoma patients with GRP78 as high-expressed, respec-tively, showing significant differences ( χ2=17.482, 12.097, P<0.05). Results of univariate analysis showed that alanine aminotransferase (ALT), tumor pathological grading and GRP78 expression were related factors affecting the 3-year overall survival rate and disease progression-free survival rate of hepatocellular carcinoma patients ( hazard ratio=2.317, 2.039, 3.740 and 2.194, 2.177, 2.927, 95% confidence interval as 1.150?4.671, 1.201?3.462, 2.116?6.612 and 1.048?4.593, 1.093?4.336, 1.492?5.742, P<0.05). Results of multivariate analysis showed that ALT >40 U/L, tumor pathological grading as Ⅲ-Ⅳ grade and GRP78 as high-expressed were independent risk factors affecting the 3-year overall survival rate and disease progression-free survival rate of hepatocellular carcinoma patients ( hazard ratio=2.438, 2.245, 3.223 and 3.046, 2.473, 3.307, 95% confidence interval as 1.114?5.334, 1.047?4.814, 1.396?7.440 and 1.337?6.940, 1.141?5.360, 1.399?7.819, P<0.05). (3) Effects of inhibiting of GRP78 expression on the proliferation of hepatoma cells: ①results of qRT-PCR showed that the relative expression of GRP78 messenger RNA (mRNA) in Huh7, Hep3B, and LO2 cells were 3.06±0.33, 4.42±0.60 and 1.00±0.02. There were significant differences in GRP78 mRNA expression between Huh7 and LO2 cells or Hep3B and LO2 cells ( t=6.19, 5.42, P<0.05). ②Results of Western Blot detection showed that the relative expression of GRP78 protein in Huh7, Hep3B, and LO2 cells were 1.65±0.01, 1.77±0.01 and 0.99±0.02. There were significant differences in GRP78 protein expression between Huh7 and LO2 cells or Hep3B and LO2 cells ( t=75.09, 108.10, P<0.05). ③Results of cell proliferation experiments showed that the growth rates in Hu7 GRP78 gene-specific shRNA lentiviruses group cells and Hu7 negative control shRNA lentivirus group cells at 24, 48, 72 and 96 hours were 111.51%±0.35%, 144.85%±0.68%, 188.71%±3.62%, 282.51%±5.25% and 190.08%±0.58%, 285.76%±2.69%, 459.51%±4.29%, 597.88%±12.25%, showing signifi-cant differences ( Fgroups=1 360.000, Ftime=668.500, Finteraction=197.600, P<0.05). The growth rates in Hep3B GRP78 gene-specific shRNA lentiviruses group cells and Hep3B negative control shRNA lentivirus group cells at 24, 48, 72 and 96 hours were 124.47%±0.25%, 153.25%±1.25%, 195.45%±3.19%, 282.51%±10.76% and 179.69%±0.33%, 322.67%±2.46%, 486.27%±5.82%, 622.35%±12.58%, showing significant differences ( Fgroups=1 222.000, Ftime=706.200, Finteraction=179.600, P<0.05). ④Results of the cell clone formation experiments showed that the number of cells in Hu7 GRP78 gene-specific shRNA lentiviruses group cells and Hu7 negative control shRNA lentivirus group cells were 125±3 and 435±17, showing a significant difference ( t=17.86, P<0.05). The number of cells in Hep3B GRP78 gene-specific shRNA lentiviruses group cells and Hep3B negative control shRNA lentivirus group cells were 138±3 and 388±7, showing a significant difference ( t=32.29, P<0.05). (4) Effects of inhibiting of GRP78 expression on the gene and protein expression of p53, p21, CDK2, CDK4, and CDK6 in hepatoma cells: results of high-throughput transcription histological analysis showed that the relative expression rates of p53, p21, CDK2, CDK4, and CDK6 were 19%, 334%, 398%, 41% and 49% in the Hu7 GRP78 gene-specific shRNA lentiviruses group cells comparing to the Hu7 negative control shRNA lentivirus group cells. ①Results of qRT-PCR showed that the relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 mRNA were 0.17±0.03, 4.05±0.71, 3.73±0.47, 0.49±0.09, 0.48±0.06, 0.36±0.07 in the Hu7 GRP78 gene-specific shRNA lentiviruses group cells, versus 1.00±0.05, 1.03±0.17, 1.00±0.07, 1.01±0.09, 1.02±0.14, 1.00±0.03 in the Hu7 negative control shRNA lentivirus group cells, showing significant differences ( t=14.62, 4.17, 5.72, 4.26, 3.49, 8.82, P<0.05). The relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 mRNA were 0.11±0.01, 4.28±0.43, 4.19±0.22, 0.44±0.01, 0.25±0.03, 0.68±0.04 in Hep3B GRP78 gene-specific shRNA lentiviruses group cells, versus 1.01±0.09, 1.02±0.15, 1.00±0.06, 1.01±0.09, 1.01±0.08, 1.15±0.02 in Hep3B negative control shRNA lentivirus group cells, showing significant differences ( t=10.19, 7.14, 13.79, 6.37, 9.42, 9.61, P<0.05). ②Results of Western Blot detection showed that the relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 protein were 0.45±0.01, 1.98±0.05, 2.31±0.12, 0.75±0.03, 0.69±0.04, 0.82±0.03 in the Hu7 GRP78 gene-specific shRNA lentiviruses group cells, versus 1.01±0.05, 1.03±0.01, 1.00±0.02, 1.00±0.01, 1.01±0.02, 1.00±0.03 in the Hu7 negative control shRNA lentivirus group cells, showing significant differences ( t=11.07, 14.56, 11.30, 11.29, 10.55, 11.37, P<0.05). The relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 protein were 0.61±0.03, 1.98±0.16, 2.55±0.12, 0.85±0.03, 0.78±0.01, 0.54±0.02 in Hep3B GRP78 gene-specific shRNA lentiviruses group cells, versus 1.00±0.03, 1.05±0.02, 1.05±0.01, 1.05±0.02, 1.00±0.02, 1.00±0.02 in Hep3B negative control shRNA lentivirus group cells, showing significant differences ( t=10.97, 13.40, 12.35, 11.06, 12.45, 13.78, P<0.05). (5) Effects of HA15 on the proliferation and the gene and protein expression of p53, p21, CDK2, CDK4, and CDK6 in hepatoma cells: results of 50% inhibiting concentration (IC50) test of HA15 showed that the IC50 of HA15 for Huh7 and Hep3B cells at 48 hours were 9.98 μmol/L and 13.70 μmol/L. ①Huh7 and Hep3B cells were treated with 9.98 μmol/L and 13.70 μmol/L of HA15. Results of cell proliferation experiments showed that the growth rates at 24, 48, 72, and 96 hours were 112.81%±0.27%, 154.71%±1.45%, 237.66%±16.77%, 294.40%±14.92% in the HA15-Huh7 cells, versus 133.67%±0.49%, 352.93%±2.31%, 557.17%±4.89%, 662.60%±13.31% in the normal Huh7 cells, showing a significant difference ( Fgroups=766.800, Ftime=518.200, Finteraction=133.300, P<0.05). The growth rates at 24, 48, 72, and 96 hours were 121.27%±2.32%, 203.85%±3.18%, 240.80%±3.02%, 286.50%±7.10% in the HA15-Hep3B cells, versus 239.14%±1.02%, 362.00%±5.44%, 539.37%±10.80%, 694.79%±17.13% in the normal Hep3B cells, showing a signifi-cant difference ( Fgroups=594.300, Ftime=317.900, Finteraction=78.600, P<0.05). ②Results of qRT-PCR showed that the relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 mRNA were 0.27±0.05, 3.64±0.28, 4.13±0.41, 0.51±0.07, 0.39±0.03, 0.17±0.02 in the HA15-Huh7 cells, versus 1.02±0.14, 1.00±0.03, 1.00±0.05, 1.01±0.08, 1.01±0.09, 1.03±0.17 in the normal Huh7 cells, showing significant differences ( t=5.00, 9.25, 7.63, 4.73, 6.82, 5.01, P<0.05). The relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 mRNA were 0.28±0.03, 3.49±0.78, 4.31±0.53, 0.38±0.05, 0.36±0.04, 0.24±0.03 in the HA15-Hep3B cells, versus 1.01±0.11, 1.03±0.18, 1.01±0.08, 1.00±0.06, 1.02±0.15, 1.00±0.06 in the normal Hep3B cells, showing significant differences ( t=6.26, 3.08, 6.21, 7.97, 4.26, 11.08, P<0.05). ③Results of Western Blot detection showed that the relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 protein were 0.52±0.05, 1.94±0.08, 1.58±0.02, 0.89±0.00, 0.86±0.02, 0.74±0.01 in the HA15-Huh7 cells, versus 1.02±0.03, 1.00±0.03, 1.02±0.02, 1.04±0.03, 1.00±0.01, 1.01±0.02 in the normal Huh7 cells, showing significant differences ( t=11.54, 10.28, 11.03, 12.81, 13.67, 10.09, P<0.05). The relative expression of GRP78, p53, p21, CDK2, CDK4, and CDK6 protein were 0.57±0.02, 1.67±0.04, 1.41±0.04, 0.82±0.03, 0.70±0.02, 0.74±0.01 in the HA15-Hep3B cells, versus 1.03±0.01, 0.98±0.03, 1.00±0.03, 1.03±0.03, 1.01±0.01, 1.04±0.01 in the normal Huh7 cells, showing significant differences ( t=10.81, 11.54, 12.26, 13.62, 14.23, 10.17, P<0.05). Conclusions:High expression of GRP78 is an independent risk factor affecting the overall survival and disease progression-free survival of hepatocellular carcinoma patients. Inhibiting of GRP78 expression can reduce cell proliferation and the expression of p53, p21, CDK2, CDK4, and CDK6 mRNA and proteins in hepatoma cells.
3.Research progress of antiviral treatment for patients with chronic hepatitis B combined with metabolic fatty liver disease
Yue CHEN ; Wenkang GAO ; Jin YE ; Ling YANG
Chinese Journal of Hepatology 2024;32(10):955-960
Chronic hepatitis B (CHB) mainly causes cirrhosis and hepatocellular carcinoma (HCC). Metabolic fatty liver disease (MAFLD) has become the most common chronic liver disease worldwide with the continuous changes in lifestyle and dietary patterns and the increase in the number of obese individuals. Consequently, the incidence rate of CHB combined with MAFLD is rapidly increasing. However, the pathogenesis, treatment, and clinical prognosis remain unclear due to the interaction between CHB and MAFLD. Notably, in the academic community, there are still controversies as to whether patients with CHB and MAFLD should immediately start antiviral treatment, whether MAFLD affects the antiviral efficacy in CHB patients, and whether nucleos(t)ide analogues (NAs) affect the body's metabolism. This article reviews the epidemiology, clinical prognosis, treatment management strategies (especially the antiviral efficacy of NAs drugs), and NAs drug effects on the body's metabolism in patients with CHB combined with MAFLD so as to provide diagnostic and therapeutic concept for clinicians.
4.Treatment of Type 4 Cardiorenal Syndrome based on the Theory of "Yang Deficiency with Three Lackings,Controlled by the Spleen"
Yuxin HU ; Yexin CHEN ; Zeyu XUE ; Ziheng GAO ; Gaiwen CUI ; Wenkang ZHANG ; Yaoxian WANG
Journal of Traditional Chinese Medicine 2024;65(22):2363-2367
WANG Qishi put forward the theory of "yang deficiency with three lackings, controlled by the spleen" in Lixu Yuanjian (《理虚元鉴》), which regarded that yang deficiency can lead to consumptive diseases with changes of lacking essence, lacking qi, and lacking fire, so the treatment should start from the spleen to restore the middle yang urgently. This article summarised the experience of treating type 4 cardiorenal syndrome based on the theory of "yang deficiency with three lackings, controlled by the spleen", and proposed that lacking essence is the beginning of the onset of type 4 cardiorenal syndrome, lacking qi is the gradual development of the disease, and lacking fire is the changes of the disease, and ultimately resulted in the complex situation of kidney and qi deficiency, and edema due to yang deficiency, combined with syndromes variation. In the clinical evidence, in the stage of lacking fire, therapies should warm the middle and strengthen the spleen in order to rescue the middle yang, prescribed with modified Baoyuan Decoction (保元汤) plus Lizhong Decoction (理中汤); in the stage of lacking qi, prescriptions can add Taoren (Juglans regia), Tubiechong (Eupolyphaga sinensis), Fuling (Smilax glabra), Guizhi (Neolitsea cassia) to activate blood and drain water to transport and restore the center qi; in the stage of lacking essence, prescriptions can add Gouqizi (Lycium barbarum), Tusizi (Cuscuta chinensis), Duzhong (Eucommia ulmoides), Bajitian (Gynochthodes officinalis) to supplement deficiency and resolve masses to consolidate the root and supplement essence.
5.Pathogenesis, progression and treatment of biliary fibrosis
Jinyu ZHAO ; Yanyan LIN ; Ping YUE ; Jia YAO ; Ningning MI ; Matu LI ; Wenkang FU ; Long GAO ; Azumi SUZUKI ; F Peng WONG ; Kiyohito TANAKA ; Rungsun RERKNIMITR ; H Henrik JUNGER ; T Tan CHEUNG ; Emmanuel MELLOUL ; Nicolas DEMARTINES ; W Joseph LEUNG ; Jinqiu YUAN ; J Hans SCHLITT ; Wenbo MENG
Chinese Journal of Digestive Surgery 2024;23(7):989-1000
Biliary fibrosis (BF) is the result of pathological repair of bile tract injury, characterized by thickening and sclerosis of the bile duct wall and progressive stricture of the lumen, which may ultimately lead to serious adverse outcomes such as biliary obstruction, biliary cirrhosis, liver failure, and hepatobiliary malignancies. Current research describes BF as a pathological feature of certain bile tract diseases, lacking a systematic summary of its etiology, pathophysiology, molecular mechanisms, and treatment. BF is a common but easily neglected disease state in biliary system, which may promote the development and progression of hepatobiliary diseases through abnormal repair mechanism after pathological biliary tract injury. Based on the latest research progress from both domestic and international perspectives, the authors review the concept, clinical manifestation, etiology, pathogenesis, and therapeutic strategies of BF to provide a reference for clinical physicians.
6.Short-term efficacy and safety of apatinib combined with chemoradiotherapy in treatment of NSCLC patients with brain metastases
YIN Xue ; HU Zongtao ; XU Xiuli ; ZHANG Wenkang ; CUI Xiangli ; GAO Shile
Chinese Journal of Cancer Biotherapy 2020;27(6):658-663
[Abstract] Objective: To observe the short-term efficacy and safety of Apatinib combined with radiotherapy and concurrent docetaxel and cisplatin chemotherapy in driver-gene-negative non-small cell lung cancer (NSCLC) patients with brain metastases. Methods: A total of 72 NSCLC patients with brain metastases, who were treated in our hospital from June 2018 to June 2019, were enrolled in this study. The driver gene was proved to be negative by next generation sequencing (NGS). The patients were divided into control group (36 cases) and treatment group (36 cases) by Digital random grouping method.The control group received 2 cycles of chemotherapy with docetaxel and cisplatin and concurrent radiotherapy for brain metastases, and the treatment group was given Apatinib anti-angiogenic treatment based on the regimen in control group. Primary study endpoints: confirmed objective response rate (cORR) and disease control rate (DCR); Secondary study endpoints: progression-free survival (PFS), quality of life (QOL) score, serum carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF), and incidence of adverse drug events (AE). Results: Compared with the control group, cORR and DCR in treatment group were significantly improved [41.67% (15/36) vs 33.33% (12/36), 80.56% (29/36) vs 69.44% (25/36), all P<0.05], the median PFS was significantly prolonged (5.9 vs 4.6 months, P<0.05), and serum CEA and VEGF levels were significantly reduced [(16.5±2.3) vs (22.9±3.7) ng/ml, (291.6±42.6) vs (479.3±50.2) ng/L, all P<0.05], while the QOL score was slightly increased, but the difference was not statistically significant [(69.5±8.5) points vs (64.1±7.3) points, P>0.05]. There was no statistically significant difference in the incidence of acute brain edema, gastrointestinal reaction, bone marrow suppression, and liver dysfunction between the two groups of patients (all P>0.05); however, the incidences of oral mucositis, hand-foot syndrome, hypertension and proteinuria in the treatment group were significantly higher than those in the control group (all P<0.05). Conclusion: The efficacy of Apatinib combined with radiochemotherapy in driver-negative NSCLC patients with brain metastases is significantly better than that of radiochemotherapy alone, and the adverse reactions can be controlled. It is worthy of clinical recommendation.