1.Study on pharmacokinetic characteristics of ciprofol in pregnant and fetal rats
Wenhao CHU ; Yuanman QIN ; Tiantian ZHANG ; Jiaqi XU ; Ying LI ; Zhiqing ZHANG
China Pharmacy 2025;36(11):1348-1351
OBJECTIVE To study the pharmacokinetic characteristics of ciprofol in pregnant and fetal rats, and provide reference for the application of ciprofol in cesarean section. METHODS Eight pregnant rats were selected. A single dose of 2.4 mg/kg of ciprofol was administered via the tail vein. One fetal rat was selected at 2, 4, 8, 12, 16, 25, 35, 45, 60, and 90 minutes respectively after ciprofol administration. Subsequently, whole blood samples were collected simultaneously from both the pregnant rats and fetal rats. HPLC-MS/MS method was used to determine the concentration of ciprofol in the bodies of pregnant and fetal rats. The ratios of fetal-to-maternal blood concentrations (F/M ratios) at each time point were calculated, and the F/M-time curves were plotted. Subsequently, non-compartmental pharmacokinetic parameters were computed using DAS 2.0 software. RESULTS Compared with pregnant rats, cmax, AUC0-90 min and AUC0-∞ of ciprofol in fetal rats were decreased significantly, while MRT was increased significantly (P<0.05). The F/M curve of ciprofol initially increased and then decreased, and between 0.16- 0.84, reaching a maximum value of 0.84 at 45 minutes. CONCLUSIONS Ciprofol can penetrate the placental barrier, and there are significant differences in pharmacokinetic parameters between pregnant and fetal rats. Moreover, the exposure level of ciprofol in fetal rats is much lower than that in pregnant rats. Therefore, ciprofol shows promise as an ideal anesthetic agent for cesarean section delivery.
2.Shenxiao Tongluo Prescription Alleviates Kidney Injury in Diabetic Rats via PGC-1α/SIRT3/HIF-1α Pathway
Cangcang XU ; Xianbing GUO ; Guang LI ; Wenhao JIAO ; Yang ZHAO ; Yingjun DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):108-116
ObjectiveTo investigate the mechanisms of mitochondrial dynamics and metabolic reprogramming in the treatment of diabetic nephropathy (DN) by Shenxiao Tongluo prescription via the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/sirtuin-3 (SIRT3)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. MethodsSixty-five SD rats were randomized into a sham group (10 rats) and a modeling group (55 rats), and the modeling rats underwent left nephrectomy and intraperitoneal injection of streptozotocin (35 mg·kg-1) to prepare a DN model. After successful modeling, the rats were randomized into model, empagliflozin (10 mg·kg-1), and low-, medium-, and high-dose (7.656, 15.312, 30.624 g·kg-1, respectively) Shenxiao Tongluo prescription groups. The urine microalbumin (UmAlb), blood urea nitrogen (BUN), and serum creatinine (SCr) levels of rats in each group were assessed after continuous gavage for 8 weeks. The corresponding kits were used to measure the levels of lactate, superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissue. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the pathological changes in the kidney tissue. Transmission electron microscopy was employed to observe mitochondrial morphology. Immunohistochemistry was employed to determine the expression levels of dynamin-related protein 1 (DRP1) and pyruvate kinase M2 (PKM2) in the kidney tissue. Western blot was adopted to assess the protein levels of PGC-1α, SIRT3, HIF-1α, dynamin-related protein 1 (Drp1), optic atrophy 1 (OPA1), hexokinase 2 (HK2), and pyruvate kinase M2 (PKM2) in the kidney tissue. ResultsCompared with the sham group, the model group showed elevated levels of UmAlb, BUN, SCr, lactate, and MDA, decreased SOD level (P<0.05), glomerular hypertrophy, thickening of the mesangial basement membrane, vacuolar degeneration of renal tubular epithelial cells, and infiltration of renal interstitial inflammatory cells, oval mitochondria with disordered, blurred or disappearing cristae, down-regulated protein levels of PGC-1α, SIRT3, and OPA1, and up-regulated protein levels of HIF-1α, DRP1, HK2, and PKM2 (P<0.05). Compared with the model group, the treatment in all the groups increased the body weight, lowered the levels of GLU, UmAlb, BUN, and MDA, raised the level of SOD, alleviated the pathological damage in the kidney tissue and mitochondrial damage, up-regulated the expression of PGC-1α, SIRT3, and OPA1, and down-regulated the expression of HIF-1α, DRP1, and PKM2 (P<0.05). Empagliflozin and Shenxiao Tongluo prescription at medium and high doses lowered the levels of SCr and lactate and down-regulated the expression of HK2 (P<0.05), which had no statistical significance in the low-dose Shenxiao Tongluo prescription group. ConclusionShenxiao Tongluo prescription may regulate mitochondrial dynamics and metabolic reprogramming by activating the PGC-1α/SIRT3/HIF-1α pathway, thereby alleviating oxidative damage in the kidney tissue and delaying the progression of DN.
3.Shenxiao Tongluo Prescription Alleviates Kidney Injury in Diabetic Rats via PGC-1α/SIRT3/HIF-1α Pathway
Cangcang XU ; Xianbing GUO ; Guang LI ; Wenhao JIAO ; Yang ZHAO ; Yingjun DING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):108-116
ObjectiveTo investigate the mechanisms of mitochondrial dynamics and metabolic reprogramming in the treatment of diabetic nephropathy (DN) by Shenxiao Tongluo prescription via the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/sirtuin-3 (SIRT3)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. MethodsSixty-five SD rats were randomized into a sham group (10 rats) and a modeling group (55 rats), and the modeling rats underwent left nephrectomy and intraperitoneal injection of streptozotocin (35 mg·kg-1) to prepare a DN model. After successful modeling, the rats were randomized into model, empagliflozin (10 mg·kg-1), and low-, medium-, and high-dose (7.656, 15.312, 30.624 g·kg-1, respectively) Shenxiao Tongluo prescription groups. The urine microalbumin (UmAlb), blood urea nitrogen (BUN), and serum creatinine (SCr) levels of rats in each group were assessed after continuous gavage for 8 weeks. The corresponding kits were used to measure the levels of lactate, superoxide dismutase (SOD), and malondialdehyde (MDA) in the kidney tissue. Hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff staining were performed to observe the pathological changes in the kidney tissue. Transmission electron microscopy was employed to observe mitochondrial morphology. Immunohistochemistry was employed to determine the expression levels of dynamin-related protein 1 (DRP1) and pyruvate kinase M2 (PKM2) in the kidney tissue. Western blot was adopted to assess the protein levels of PGC-1α, SIRT3, HIF-1α, dynamin-related protein 1 (Drp1), optic atrophy 1 (OPA1), hexokinase 2 (HK2), and pyruvate kinase M2 (PKM2) in the kidney tissue. ResultsCompared with the sham group, the model group showed elevated levels of UmAlb, BUN, SCr, lactate, and MDA, decreased SOD level (P<0.05), glomerular hypertrophy, thickening of the mesangial basement membrane, vacuolar degeneration of renal tubular epithelial cells, and infiltration of renal interstitial inflammatory cells, oval mitochondria with disordered, blurred or disappearing cristae, down-regulated protein levels of PGC-1α, SIRT3, and OPA1, and up-regulated protein levels of HIF-1α, DRP1, HK2, and PKM2 (P<0.05). Compared with the model group, the treatment in all the groups increased the body weight, lowered the levels of GLU, UmAlb, BUN, and MDA, raised the level of SOD, alleviated the pathological damage in the kidney tissue and mitochondrial damage, up-regulated the expression of PGC-1α, SIRT3, and OPA1, and down-regulated the expression of HIF-1α, DRP1, and PKM2 (P<0.05). Empagliflozin and Shenxiao Tongluo prescription at medium and high doses lowered the levels of SCr and lactate and down-regulated the expression of HK2 (P<0.05), which had no statistical significance in the low-dose Shenxiao Tongluo prescription group. ConclusionShenxiao Tongluo prescription may regulate mitochondrial dynamics and metabolic reprogramming by activating the PGC-1α/SIRT3/HIF-1α pathway, thereby alleviating oxidative damage in the kidney tissue and delaying the progression of DN.
4.Effects of Netupitant and palonosetron hydrochloride capsules on the pharmacokinetics of albumin-bound paclitaxel in rats under different intestinal microenvironments
Yuanman QIN ; Wenhao CHU ; Jiaqi XU ; Yutong LI ; Bo LIANG ; Xueliang ZHANG ; Jian LIU
China Pharmacy 2025;36(16):1993-1999
OBJECTIVE To investigate the impact of Netupitant and palonosetron hydrochloride capsules (NEPA) on the pharmacokinetics of Paclitaxel for injection (albumin bound) (i. e. albumin-bound paclitaxel) under different intestinal microenvironment conditions. METHODS Male SD rats were divided into a normal group and a model group (n=16). Rats in the model group were intragastrically administered vancomycin solution to establish an intestinal disorder model. The next day after modeling, intestinal microbiota diversity was analyzed, and the mRNA expressions of cytochrome P450 3A1 (CYP3A1) and CYP2C11 in small intestine and liver tissues as well as those protein expressions in liver tissue were measured. Male SD rats were grouped as described above (n=16). The normal group was subdivided into the TP chemotherapy group (TP-1 group) and the TP chemotherapy+NEPA group (TP+NEPA-1 group); the model group was subdivided into the TP chemotherapy group (TP-2 group) and the TP chemotherapy+NEPA group (TP+NEPA-2 group) (n=8). Rats in the TP+NEPA-1 and TP+NEPA-2 groups received a single intragastric dose of NEPA suspension (25.8 mg/kg, calculated by netupitant). One hour later, all four groups received a single tail vein injection of albumin-bound paclitaxel and cisplatin. Blood samples were collected at different time points after the last administration. Using azithromycin as the internal standard, plasma paclitaxel concentrations were determined by liquid chromatography-tandem mass spectrometry. The main pharmacokinetic parameters were calculated using DAS 2.0 software and compared between groups. RESULTS Compared with the normal group, the model group showed significantly decreased Chao1 and Shannon indexes (P<0.05), significant alterations in microbiota composition and relative abundance, and significantly downregulated expressions of CYP3A1 mRNA in liver tissue and CYP2C11 mRNA in both small intestine and liver tissues (P<0.05). Compared with the TP-1 group, the AUC0-t, AUC0-∞, MRT0-t of paclitaxel in the TP-2 group, the cmax, AUC0-t, AUC0-∞ of paclitaxel in the TP+NEPA-1 group and TP+NEPA-2 group were significantly increased or prolonged; CL of paclitaxel in the TP-2 group, Vd and CL of paclitaxel in the TP+NEPA-1 group and the TP+NEPA-2 group were significantly decreased or shortened (P<0.05). Compared with the TP-2 group, cmax of paclitaxel in the TP+NEPA-2 group was significantly increased, and Vd and MRT0-t were significantly decreased or shortened (P<0.05). CONCLUSIONS Intestinal microbiota disorder affects the mRNA expressions of CYP3A1 and CYP2C11, leading to decreased clearance and increased systemic exposure of paclitaxel. Concomitant administration of NEPA under normal intestinal microbiota condition increases paclitaxel exposure. However, under conditions of intestinal microbiota disorder, concomitant administration of NEPA has a limited impact on paclitaxel systemic exposure.
5.Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery.
Ming XU ; Wenhao ZHU ; Siyu HOU ; Hongzhi XU ; Jingwen XIA ; Liyu LIN ; Hao FU ; Mingyu YOU ; Jiafeng WANG ; Zhi XIE ; Xiaohong WEN ; Yingwei WANG
Chinese Medical Journal 2025;138(17):2170-2179
BACKGROUND:
Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.
METHODS:
PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.
RESULTS:
PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.840. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by Logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically significantly lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.
CONCLUSIONS:
The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.
TRIAL REGISTRATION
ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj=128279 .
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Algorithms
;
Lung Diseases/etiology*
;
Machine Learning
;
Neurosurgical Procedures/adverse effects*
;
Postoperative Complications/diagnosis*
;
Risk Factors
;
ROC Curve
6.Engineered Escherichia coli Nissle 1917 targeted delivery of extracellular PD-L1-mFc fragment for treating inflammatory bowel disease.
Yuhong WANG ; Lin HU ; Lei WANG ; Chonghai ZHANG ; Wenhao SHEN ; Hongli YANG ; Min LI ; Xin ZHANG ; Mengmeng XU ; Muxing ZHANG ; Kai YANG ; Xiaopeng TIAN
Acta Pharmaceutica Sinica B 2025;15(11):6019-6033
Inflammatory bowel disease (IBD) is an autoimmune disorder involving complex immune regulation, where balancing localized and systemic immunosuppression is a key challenge. This study aimed to enhance the therapeutic efficacy by engineering the probiotic Escherichia coli Nissle 1917 (EcN). We removed endogenous plasmids pMUT1 and pMUT2 from wild-type EcN and expressed the mPD-L1 (19‒238 aa)-mFc fusion protein on the bacterial surface using a cytolysin A (ClyA) fragment. This modification stabilized mPD-L1 (19‒238 aa) protein expression and promoted its recruitment to outer membrane vesicles (OMVs). The engineered strain, EcNΔpMUT1/2-ClyA-mPD-L1-mFc (EcN-ePD-L1-mFc), features conditional ePD-L1-mFc expression under the araBAD promoter, enhancing gut-targeted release and reducing systemic side effects. This strain improved treatment targeting and efficiency by enabling direct ePD-L1-mFc interaction with immune cells at inflammation sites. OMVs from this strain induced Treg proliferation, inhibited effector T cell proliferation in vitro, and significantly improved intestinal inflammation and colonic epithelial barrier repair in vivo. Additionally, the bacterium restored intestinal microbiota balance, increasing Lactobacillaceae and reducing Bacteroides. This study highlights the engineered bacterium's potential for targeted intestinal immune modulation and offers a novel local IBD treatment approach with promising clinical prospects.
7.Fanconi Anemia: Exploration of DNA Repair Pathways from Genetic Diseases to Cancer and Prospects for Treatment
Jinyu SHI ; Lin XING ; Shijia LIU ; Wenhao LYU ; Bingyan ZHANG ; Lijun XU ; Yafen ZHANG
Cancer Research on Prevention and Treatment 2024;51(1):67-72
Fanconi anemia (FA) is an inheritable disorder that presents with bone marrow failure, developmental anomalies, and an increased susceptibility to cancer. The etiology of this condition stems from a genetic mutation that disrupts the proper repair of interstrand DNA cross-links (ICLs). The resultant dysregulation of the DNA damage response mechanism can induce genomic instability, thereby elevating the mutation rates and the likelihood of developing cancer. The FA pathway assumes a pivotal role in safeguarding genome stability through its involvement in the repair of DNA cross-links and the maintenance of overall genomic integrity. A mutation in the germ line of any of the genes responsible for encoding the FA protein results in the development of FA. The prevalence of aberrant FA gene expression in somatic cancer, coupled with the identification of a connection between FA pathway activation and resistance to chemotherapy, has solidified the correlation between the FA pathway and cancer. Consequently, targeted therapies that exploit FA pathway gene abnormalities are being progressively developed and implemented. This review critically examines the involvement of the FA protein in the repair of ICLs, the regulation of the FA signaling network, and its implications in cancer pathogenesis and prognosis. Additionally, it explores the potential utility of small-molecule inhibitors that target the FA pathway.
8.Analysis of obesity factors among public primary school students in a town, Minhang District, Shanghai
Danhong MO ; Weizhong ZHAO ; Duojun XU ; Bing LI ; Xiaosa WEN ; Qi ZHAO ; Wenhao XUE
Shanghai Journal of Preventive Medicine 2024;36(1):84-89
ObjectiveTo identify and analyze the possible influencing factors of obesity among public primary school students in Minhang District, Shanghai. MethodsBasic data, collected through questionnaire stars, was imported with merged physical examination data into Excel to form a database. Data were collected by questionnaire and analyzed by SPSS 22.00. Independent sample t-test was used for the data with normal distribution. Nonparametric test was used for the data with non-normal distribution. χ2 test was used for the quantitative data. Logistic regression was used for univariate and multivariate analysis
9.Mid- and long-term results of surgical treatment of brachiocephalic Takayasu arteritis
Jintao SHAN ; Zhaohui HUA ; Peng XU ; Hui CAO ; Zhouyang JIAO ; Likun SUN ; Shirui LIU ; Lei XIA ; Wenhao XUE ; Zhen LI
Chinese Journal of Surgery 2024;62(3):229-234
Objective:To examine the mid - and long-term outcomes of surgical treatment of brachiocephalic Takayasu arteritis.Methods:This is a retrospective case series study. The clinical data of 39 patients,which had been diagnosed as brachiocephalic Takayasu arteritis (244 cases),who underwent surgical treatment,were analyzed between July 2012 to November 2022 at Department of Endoluminal Vascular Surgery, the First Affiliated Hospital of Zhengzhou University. There were 5 males and 34 females, aged (37.9±14.0)years (range:13 to 71 years). Despite medical treatment, the patients suffered severe ischemic symptoms continually and then underwent surgical interventions. Among them, 20 patients underwent endovascular procedures, 11 underwent open surgical procedures, and 8 underwent hybrid procedures. Patients were followed up through outpatient visits at 1, 3, 6 months after surgery and once every year later. Follow-up was conducted until November 2022. Operation status, postoperative complications and re-intervention of patients were recorded and the Kaplan-Meier survival curves were used to analyze postoperative vascular patency rates.Results:All 39 surgeries were successful, with no intraoperative death or serious complications. The follow-up period was (48.8±38.2) months(range:1 to 123 months). Thirty-three patients experienced symptom relief after surgery, and 6 patients required secondary surgical interventions. The patency rates for the endovascular treatment group at 1-, 3-, 5-, and 10-year were 95.0%, 75.2%, 60.2%, and 60.2%, respectively, while the patency rates for open surgery were all 90.9%. In the hybrid surgery group, the patency rates at 1-, 3-, 5-, and 8-year were all 87.5%.Conclusion:For patients with brachiocephalic Takayasu arteritis, choice of an appropriate blood flow revascularization intervention should be based on the patient′s condition,and the mid-and long-term outcomes are satisfactory.
10.2,6-dimethoxy-1,4-benzoquinone alleviates septic shock in mice by inhibiting NLRP3 inflammasome activation
Wei ZHANG ; Mengmeng DENG ; Yao ZENG ; Chenfei LIU ; Feifei SHANG ; Wenhao XU ; Haoyi JIANG ; Fengchao WANG ; Yanqing YANG
Journal of Southern Medical University 2024;44(6):1024-1032
Objective To investigate the mechanism of 2,6-dimethoxy-1,4-benzoquinone(DMQ),an active ingredients in fermented wheat germ extract,for inhibiting NLRP3 inflammasome activation and alleviating septic shock in mice.Methods Cultured murine bone marrow-derived macrophages(BMDM)stimulated with lipopolysaccharide(LPS)were treated with DMQ,followed by treatment with Nigericin,ATP,and MSU for activating the canonical NLRP3 inflammasome;the non-canonical NLRP3 inflammasome was activated by intracellular transfection of LPS,and AIM2 inflammasome was activated using Poly A:T.In human monocytic THP-1 cells,the effect of Nigericin on inflammasome activation products was examined using Western blotting and ELISA.Co-immunoprecipitation was performed to explore the mechanism of DMQ-induced blocking of NLRP3 inflammasome activation.In a male C57BL/6J mouse model of LPS-induced septic shock treated with 20 and 40 mg/kg DMQ,the levels of IL-1β and TNF-α in the serum and peritoneal lavage fluid were determined using ELISA,and the survival time of the mice within 36 h was observed.Results Treatment with DMQ effectively inhibited LPS-induced activation of canonical NLRP3 inflammasome in mouse BMDM and human THP-1 cells and also inhibited non-canonical NLRP3 inflammasome activation in mouse BMDM,but produced no significant effect on AIM2 inflammasome activation.DMQ significantly blocked the binding between ASC and NLRP3.In the mouse models of septic shock,DMQ treatment significantly reduced the levels of IL-1β in the serum and peritoneal fluid and obviously prolonged survival time of the mice.Conclusion DMQ can effectively block ASC-NLRP3 interaction to inhibit NLRP3 inflammasome activation and alleviate LPS-induced septic shock in mice.

Result Analysis
Print
Save
E-mail