1.Antivirus effects of extract from gardenia.
Yi-Zhong WANG ; Xiao-Lan CUI ; Ying-Jie GAO ; Shan-Shan GUO ; Xiu-Kun WANG ; Yang HUANG ; Ye ZHAO ; Weng-Feng GONG
China Journal of Chinese Materia Medica 2006;31(14):1176-1178
OBJECTIVETo observe the effect of the extract from gardenia on influenza viral pneumonia in mice and virus-induced cytopathic effect.
METHODThe mice were infected by influenza virus in nasal, the lung inflammation, mortality rate and life elongation rate were observed respectively. The anti-viral activity of the extract from gardenia was accessed by cytopathic effect (CPE) in vitro and 0% toxicity concentration (TC0), 50% toxicity concentration (TC50), 50% inhibitor concentration (IC50), therapeutic index (TI) were determined by Reed-Muench method.
RESULTThe pneumonia induced by influenza virus in mice was inhibited significantly by the extract from gardenia, as the mortality rate decreased and the life elongation rate increased remarkably. Meanwhile the NO content in serum decreased significantly; The cytopathic effect induced by six kinds of viruses was inhibited remarkably.
CONCLUSIONThe six kinds of viruses were inhibited significantly by the extract from gardenia which inhibitory effect on mice influenza viral pneumonia was related to the NO content decreased.
Animals ; Antiviral Agents ; pharmacology ; Cells, Cultured ; Drugs, Chinese Herbal ; isolation & purification ; pharmacology ; Epithelial Cells ; cytology ; virology ; Esophagus ; cytology ; virology ; Female ; Gardenia ; chemistry ; Herpesvirus 1, Human ; drug effects ; Humans ; Influenza A Virus, H1N1 Subtype ; drug effects ; Male ; Mice ; Nitric Oxide ; blood ; Orthomyxoviridae ; pathogenicity ; Plants, Medicinal ; chemistry ; Pneumonia, Viral ; blood ; drug therapy ; Random Allocation ; Respiratory Syncytial Virus, Human ; drug effects
2.Semen parameters in men recovered from COVID-19.
Tong-Hang GUO ; Mei-Ying SANG ; Shun BAI ; Hui MA ; Yang-Yang WAN ; Xiao-Hua JIANG ; Yuan-Wei ZHANG ; Bo XU ; Hong CHEN ; Xue-Ying ZHENG ; Si-Hui LUO ; Xue-Feng XIE ; Chen-Jia GONG ; Jian-Ping WENG ; Qing-Hua SHI
Asian Journal of Andrology 2021;23(5):479-483
The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.
Adult
;
Asthenozoospermia/virology*
;
COVID-19/physiopathology*
;
China
;
Gonadal Steroid Hormones/blood*
;
Humans
;
Male
;
Progesterone/blood*
;
Prolactin/blood*
;
SARS-CoV-2
;
Semen/physiology*
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa/physiology*
;
Time Factors
3.Altered Retinal Dopamine Levels in a Melatonin-proficient Mouse Model of Form-deprivation Myopia.
Kang-Wei QIAN ; Yun-Yun LI ; Xiao-Hua WU ; Xue GONG ; Ai-Lin LIU ; Wen-Hao CHEN ; Zhe YANG ; Ling-Jie CUI ; Yun-Feng LIU ; Yuan-Yuan MA ; Chen-Xi YU ; Furong HUANG ; Qiongsi WANG ; Xiangtian ZHOU ; Jia QU ; Yong-Mei ZHONG ; Xiong-Li YANG ; Shi-Jun WENG
Neuroscience Bulletin 2022;38(9):992-1006
Reduced levels of retinal dopamine, a key regulator of eye development, are associated with experimental myopia in various species, but are not seen in the myopic eyes of C57BL/6 mice, which are deficient in melatonin, a neurohormone having extensive interactions with dopamine. Here, we examined the relationship between form-deprivation myopia (FDM) and retinal dopamine levels in melatonin-proficient CBA/CaJ mice. We found that these mice exhibited a myopic refractive shift in form-deprived eyes, which was accompanied by altered retinal dopamine levels. When melatonin receptors were pharmacologically blocked, FDM could still be induced, but its magnitude was reduced, and retinal dopamine levels were no longer altered in FDM animals, indicating that melatonin-related changes in retinal dopamine levels contribute to FDM. Thus, FDM is mediated by both dopamine level-independent and melatonin-related dopamine level-dependent mechanisms in CBA/CaJ mice. The previously reported unaltered retinal dopamine levels in myopic C57BL/6 mice may be attributed to melatonin deficiency.
Animals
;
Disease Models, Animal
;
Dopamine
;
Melatonin
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred CBA
;
Myopia
;
Retina
;
Sensory Deprivation