1.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
2.Comparative Study of Diffuse Large B-Cell Lymphoma and Reactive Lymphoid Hyperplasia Lymph Node Derived Mesenchymal Stem Cells.
Yu-Shuo MA ; Zhi-He LIU ; Yang SUN ; Yu-Hang ZHANG ; Wen-Qiu WANG ; Li-Sheng WANG ; Xia ZHAO
Journal of Experimental Hematology 2025;33(5):1516-1523
OBJECTIVE:
To investigate the biological behavior, differentiation ability, and differential gene expression of lymph node mesenchymal stem cells (MSCs) in patients with diffuse large B-cell lymphoma (DLBCL) and reactive lymphoid hyperplasia (RLH), providing a theoretical basis for clinical chemotherapy resistance.
METHODS:
Lymph node MSCs from patients with DLBCL and RLH were separated, passaged and cultured. The cell morphology and growth status were observed. Flow cytometry was performed to detect the immune phenotype of MSCs. The in vitro directed differentiation ability of the two types of MSCs was observed. High-throughput sequencing was used to analyze the differential gene expression and enrichment of two groups of MSCs.
RESULTS:
The lymph node MSCs of patients with DLBCL and RLH had similar cell morphology and growth characteristics, and both groups of MSCs expressed CD90, CD105, and CD73 on the cell surface. Compared with lymph node MSCs derived from patients with RLH, lymph node MSCs derived from DLBCL patients showed stronger osteogenic and adipogenic differentiation abilities. High-throughput sequencing results displayed that lymph node MSCs derived from DLBCL patients significantly upregulated some genes such as TOP2A, LFNG, GRIA3, SEC14L2, SPON2, AURKA, LRRC15, FOXD1, HOXC9, CDC20 and remarkably downregulated some genes such as TBC1D8, LDLR, PCDHAC2, POLH, PKP2, ANKRD37, DMKN, HSD11B1, ARHGAP20, PTGS1,etc.
CONCLUSION
Lymph node MSCs in DLBCL patients exhibit unique biological behavior and gene expression profiles, which may be closely related to clinical chemotherapy resistance.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Cell Differentiation
;
Lymph Nodes/pathology*
;
Pseudolymphoma/pathology*
3.Lacticaseibacillus paracasei E6 improves vinorelbine-induced immunosuppression in zebrafish through its metabolites acetic acid and propionic acid.
Xu XINZHU ; Lina GUO ; Kangdi ZHENG ; Yan MA ; Shuxian LIN ; Yingxi HE ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(2):331-339
OBJECTIVES:
To explore the mechanism of Lacticaseibacillus paracasei E6 for improving vinorelbine-induced immunosuppression in zebrafish.
METHODS:
The intestinal colonization of L. paracasei E6 labeled by fluorescein isothiocyanate (FITC) in zebrafish was observed under fluorescence microscope. In a zebrafish model of vinorelbine-induced immunosuppression, the immunomodulatory activity of L. paracasei E6 was assessed by analyzing macrophage and neutrophil counts in the caudal hematopoietic tissue (CHT), the number of T-lymphocyte, and the expressions of interleukin-12 (IL-12) and interferon-γ (IFN-γ). The contents of short-chain fatty acids (SCFAs) in L. paracasei E6 fermentation supernatant and the metabolites of L. paracasei E6 in zebrafish were detected by LC-MS/MS-based targeted metabolomics. The immunomodulatory effects of the SCFAs including sodium acetate, sodium propionate and sodium butyrate were evaluated in the zebrafish model of immunosuppression.
RESULTS:
After inoculation, green fluorescence of FITC-labeled L. paracasei E6 was clearly observed in the intestinal ball, midgut and posterior gut regions of zebrafish. In the immunocompromised zebrafish model, L. paracasei E6 significantly alleviated the reduction of macrophage and neutrophil counts in the CHT, increased the fluorescence intensity of T-lymphocytes, and promoted the expressions of IL-12 and IFN-γ. Compared with MRS medium, L. paracasei E6 fermentation supernatant showed significantly higher levels of acetic acid, propionic acid and butyric acid, which were also detected in immunocompromised zebrafish following treatment with L. paracasei E6. Treatment of the zebrafish model with sodium acetate and sodium propionate significantly increased macrophage and neutrophil counts in the CHT and effectively inhibited vinorelbine-induced reduction of thymus T cells.
CONCLUSIONS
L. paracasei E6 can improve vinorelbine-induced immunosuppression in zebrafish through its SCFA metabolites acetic acid and propionic acid.
Animals
;
Zebrafish/immunology*
;
Acetic Acid/metabolism*
;
Propionates/metabolism*
;
Fatty Acids, Volatile/metabolism*
4.Lactobacillus plantarum ZG03 alleviates oxidative stress via its metabolites short-chain fatty acids.
Shuxian LIN ; Lina GUO ; Yan MA ; Yao XIONG ; Yingxi HE ; Xinzhu XU ; Wen SHENG ; Suhua XU ; Feng QIU
Journal of Southern Medical University 2025;45(10):2223-2230
OBJECTIVES:
To investigate the efficacy of Lactobacillus plantarum ZG03 (L. plantarum ZG03) for ameliorating oxidative stress in zebrafish.
METHODS:
We evaluated the growth pattern of L. plantarum ZG03, observed its morphology using field emission scanning electron microscopy, and assessed its safety and potential efficacy with whole-genome sequencing for genetic analysis. FITC-labeled ZG03 was used to observe its intestinal colonization in zebrafish. In a zebrafish model of 2% glucose-induced oxidative stress, the effect of ZG03 was evaluated by assessing the changes in neutrophils in the caudal hematopoietic tissue (CHT), superoxide dismutase (SOD) activity, reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content. Liquid chromatography-mass spectrometry-based targeted metabolomics was used for analyzing short-chain fatty acids (SCFAs) in the zebrafish, and the antioxidant effects of the key metabolites (acetate, propionate, and caproate) were tested.
RESULTS:
On MRS agar, L. plantarum ZG03 formed circular, smooth, moist, and milky-white colonies with a rod-shaped cell morphology. Genomic analysis revealed abundant sugar metabolism gene clusters. After inoculation of FITC-labeled L. plantarum ZG03 in zebrafish, green fluorescence was clearly observed in the intestinal bulb, mid-intestine, and hind intestine. In zebrafish with glucose-induced oxidative stress, L. plantarum ZG03 significantly reduced ROS levels and the number of neutrophils in the CHT with increased SOD activity. L.plantarum ZG03 significantly increased the content of SCFAs including acetic acid, propionic acid, and caproic acid in zebrafish metabolites. In addition, sodium acetate, sodium propionate, and sodium caproate in the SCFAs significantly increased SOD activity in the zebrafish models.
CONCLUSIONS
L. plantarum ZG03 ameliorates oxidative stress in a glucose-induced zebrafish model through its metabolites, particularly the SCFAs including acetic acid, propionic acid and caproic acid.
Animals
;
Zebrafish/metabolism*
;
Oxidative Stress
;
Lactobacillus plantarum/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Probiotics
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
5.Progress on Wastewater-based Epidemiology in China: Implementation Challenges and Opportunities in Public Health.
Qiu da ZHENG ; Xia Lu LIN ; Ying Sheng HE ; Zhe WANG ; Peng DU ; Xi Qing LI ; Yuan REN ; De Gao WANG ; Lu Hong WEN ; Ze Yang ZHAO ; Jianfa GAO ; Phong K THAI
Biomedical and Environmental Sciences 2025;38(11):1354-1358
Wastewater-based epidemiology has emerged as a transformative surveillance tool for estimating substance consumption and monitoring disease prevalence, particularly during the COVID-19 pandemic. It enables the population-level monitoring of illicit drug use, pathogen prevalence, and environmental pollutant exposure. In this perspective, we summarize the key challenges specific to the Chinese context: (1) Sampling inconsistencies, necessitating standardized 24-hour composite protocols with high-frequency autosamplers (≤ 15 min/event) to improve the representativeness of samples; (2) Biomarker validation, requiring rigorous assessment of excretion profiles and in-sewer stability; (3) Analytical method disparities, demanding inter-laboratory proficiency testing and the development of automated pretreatment instruments; (4) Catchment population dynamics, reducing estimation uncertainties through mobile phone data, flow-based models, or hydrochemical parameters; and (5) Ethical and data management concerns, including privacy risks for small communities, mitigated through data de-identification and tiered reporting platforms. To address these challenges, we propose an integrated framework that features adaptive sampling networks, multi-scale wastewater sample banks, biomarker databases with multidimensional metadata, and intelligent data dashboards. In summary, wastewater-based epidemiology offers unparalleled scalability for equitable health surveillance and can improve the health of the entire population by providing timely and objective information to guide the development of targeted policies.
China/epidemiology*
;
Humans
;
Wastewater/analysis*
;
COVID-19/epidemiology*
;
Public Health
;
Wastewater-Based Epidemiological Monitoring
;
SARS-CoV-2
6.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.
7.The link between endoplasmic reticulum stress and glial cell activation-mediated neuroinflammation in epilepsy
Sheng-Jie XU ; Jia-Qiu XI ; Xiao-Wen YU ; Xiao-Fan MENG ; Zhong-Lin WANG
Medical Journal of Chinese People's Liberation Army 2024;49(4):475-481
Epilepsy is a chronic disease characterized by recurrent,sudden,and excessive synchronous discharge of neurons in the brain,leading to transient brain dysfunction,and inflammatory responses in specific regions within the central nervous system are common features of epilepsy.In recent years,there has been increasing evidence that endoplasmic reticulum stress is involved in the pathology of epilepsy,which activates the unfolded protein response,then regulate and control nuclear factor kappa-B(NF-κB),efficiently induces glial cell activation through the release of pro-inflammatory signals,in turn affects epileptogenesis and seizures by triggering neuroinflammation.This review focuses on the close link between endoplasmic reticulum stress and glial cell activation-mediated neuroinflammation in epilepsy pathology,aiming to provide insights for a deeper understanding of epilepsy.
9.Expression and Significance of Lactate Dehydrogenase A in Renal Cell Carcinoma
Wen-han QIU ; Ding-zhun LIAO ; Yi-yu SHENG ; Hai-yun XIONG ; Jun LI
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(5):816-822
ObjectiveTo analyze the expression of Lactate dehydrogenase A(LDHA) in both renal cell carcinoma (RCC) tissue and RCC cell lines, and to investigate the impact of LDHA expression on the progression of RCC. MethodsFrom June 2018 to June 2022, totally 52 cases of RCC tissue samples and 49 cases of para-cancerous tissue samples were collected through surgical procedures from our hospital. LDHA expression was detected using immunohistochemistry (IHC). The expression levels of LDHA in vitro were also detected in the normal human proximal tubule epithelial cell line HK-2 and renal cell carcinoma cell lines A498, Caki-2, ACHN, and 786-O by using qRT-PCR and Western blot. A recombinant plasmid carrying LDHA-shRNA was constructed and then transfected into 786-O cells to down-regulate the expression of LDHA. Tumor proliferative capacity was monitored using CCK-8 assay, clonal formation assay and EdU assessments. Additionally, cell glycolytic activity was assessed through glucose uptake assay, lactate secretion assay, and ECAR analysis. ResultsIHC analysis revealed significantly higher expression of LDHA in RCC tissue compared to adjacent tissues(P<0.05). Furthermore, RCC tissues with higher TNM stage exhibited greater expression of LDHA than those with lower TNM stage (P<0.05). The results of qRT-PCR and Western blot demonstrated that the expression of LDHA in each RCC cell line was significantly higher than that in HK-2(P<0.05). After blocking the expression of LDHA in 786-O, there was a significant down-regulation of cell proliferation and glycolysis capacity (P<0.05). ConclusionsThe expression of LDHA in RCC tissue and RCC cell lines is significantly overexpressed compared with normal one, particularly in those with higher TNM stage. Knockdown of the expression of LDHA significantly suppresses cell proliferation and aerobic glycolysis capacity in 786-O.
10.Drug-coated balloons for the treatment of ostial left anterior descending or ostial left circumflex artery lesions: a patient-level propensity score-matched analysis.
Liang PAN ; Wen-Jie LU ; Zhan-Ying HAN ; San-Cong PAN ; Xi WANG ; Ying-Guang SHAN ; Meng PENG ; Xiao-Fei QIN ; Guo-Ju SUN ; Pei-Sheng ZHANG ; Jian-Zeng DONG ; Chun-Guang QIU
Journal of Geriatric Cardiology 2023;20(10):716-727
BACKGROUND:
Controversy exists as to the optimal treatment approach for ostial left anterior descending (LAD) or ostial left circumflex artery (LCx) lesions. Drug-coated balloons (DCB) may overcome some of the limitations of drug-eluting stents (DES). Therefore, we investigated the security and feasibility of the DCB policy in patients with ostial LAD or ostial LCx lesions, and compared it with the conventional DES-only strategy.
METHODS:
We retrospectively enrolled patients with de novo ostial lesions in the LAD or LCx who underwent interventional treatment. They were categorized into two groups based on their treatment approach: the DCB group and the DES group. The treatment strategies in the DCB group involved the use of either DCB-only or hybrid strategies, whereas the DES group utilized crossover or precise stenting techniques. Two-year target lesion revascularization was the primary endpoint, while the rates of major adverse cardiovascular events, cardiac death, target vessel myocardial infarction, and vessel thrombosis were the secondary endpoints. Using propensity score matching, we assembled a cohort with comparable baseline characteristics. To ensure result analysis reliability, we conducted sensitivity analyses, including interaction, and stratified analyses.
RESULTS:
Among the 397 eligible patients, 6.25% of patients who were planned to undergo DCB underwent DES. A total of 108 patients in each group had comparable propensity scores and were included in the analysis. Two-year target lesion revascularization occurred in 5 patients (4.90%) and 16 patients (16.33%) in the DCB group and the DES group, respectively (odds ratio = 0.264, 95% CI: 0.093-0.752, P = 0.008). Compared with the DES group, the DCB group demonstrated a lower major adverse cardiovascular events rate (7.84% vs. 19.39%, P = 0.017). However, differences with regard to cardiac death, non-periprocedural target vessel myocardial infarction, and definite or probable vessel thrombosis between the groups were non-significant.
CONCLUSIONS
The utilization of the DCB approach signifies an innovative and discretionary strategy for managing isolated ostial lesions in the LAD or LCx. Nevertheless, a future randomized trial investigating the feasibility and safety of DCB compared to the DES-only strategy specifically for de novo ostial lesions in the LAD or LCx is highly warranted.

Result Analysis
Print
Save
E-mail