1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
7.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
8.Application of 3D-printed auxiliary guides in adolescent scoliosis surgery.
Dong HOU ; Jian-Tao WEN ; Chen ZHANG ; Jin HUANG ; Chang-Quan DAI ; Kai LI ; Han LENG ; Jing ZHANG ; Shao-Bo YANG ; Xiao-Juan CUI ; Juan WANG ; Xiao-Yun YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1119-1125
OBJECTIVE:
To investigate the accuracy and safety of pedicle screw placement using 3D-printed auxiliary guides in scoliosis correction surgery for adolescents.
METHODS:
A retrospective analysis was conducted on the clinical data of 51 patients who underwent posterior scoliosis correction surgery from January 2020 to March 2023. Among them, there were 35 cases of adolescent idiopathic scoliosis and 16 cases of congenital scoliosis. The patients were divided into two groups based on the auxiliary tool used:the 3D-printed auxiliary guide screw placement group (3D printing group) and the free-hand screw placement group (free-hand group, without auxiliary tools). The 3D printing group included 32 patients (12 males and 20 females) with an average age of (12.59±2.60) years;the free-hand group included 19 patients (7 males and 12 females) with an average age of (14.58±3.53) years. The two groups were compared in terms of screw placement accuracy and safety, spinal correction rate, intraoperative blood loss, number of intraoperative fluoroscopies, operation time, hospital stay, and preoperative and last follow-up scores of the Scoliosis Research Society-22 (SRS-22) questionnaire.
RESULTS:
A total of 707 pedicle screws were placed in the two groups, with 441 screws in the 3D printing group and 266 screws in the free-hand group. All patients in both groups successfully completed the surgery. There was a statistically significant difference in operation time between the two groups (P<0.05). The screw placement accuracy rate of the 3D printing group was 95.46% (421/441), among which the Grade A placement rate was 89.34% (394/441);the screw placement accuracy rate of the free-hand group was 86.47% (230/266), with a Grade A placement rate of 73.31% (195/266). There were statistically significant differences in the accuracy of Grade A, B, and C screw placements between the two groups (P<0.05), while no statistically significant differences were observed in intraoperative blood loss, number of fluoroscopies, correction rate, or hospital stay (P>0.05). In the SRS-22 questionnaire scores, the scores of functional status and activity ability, self-image, mental status, and pain of patients in each group at the last follow-up were significantly improved compared with those before surgery (P<0.05), but there were no statistically significant differences in all scores between the two groups (P>0.05).
CONCLUSION
In scoliosis correction surgery, compared with traditional free-hand screw placement, the use of 3D-printed auxiliary guides for screw placement significantly improves the accuracy and safety of screw placement and shortens the operation time.
Humans
;
Male
;
Scoliosis/surgery*
;
Female
;
Adolescent
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Pedicle Screws
;
Child
9.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
10.Microdissection testicular sperm extraction for men with nonobstructive azoospermia who have a testicular tumor in situ at the time of sperm retrieval.
Hao-Cheng LIN ; Wen-Hao TANG ; Yan CHEN ; Yang-Yi FANG ; Kai HONG
Asian Journal of Andrology 2025;27(3):423-427
Oncological microdissection testicular sperm extraction (onco-micro-TESE) represents a significant breakthrough for patients with nonobstructive azoospermia (NOA) and a concomitant in situ testicular tumor, to be managed at the time of sperm retrieval. Onco-micro-TESE addresses the dual objectives of treating both infertility and the testicular tumor simultaneously. The technique is intricate, necessitating a comprehensive understanding of testicular anatomy, physiology, tumor biology, and advanced microsurgical methods. It aims to carefully extract viable spermatozoa while minimizing the risk of tumor dissemination. This review encapsulates the procedural intricacies, evaluates success determinants, including tumor pathology and spermatogenic tissue health, and discusses the implementation of imaging techniques for enhanced surgical precision. Ethical considerations are paramount, as the procedure implicates complex decision-making that weighs the potential oncological risks against the profound desire for fatherhood using the male gametes. The review aims to provide a holistic overview of onco-micro-TESE, detailing methodological advances, clinical outcomes, and the ethical landscape, thus offering an indispensable resource for clinicians navigating this multifaceted clinical scenario.
Humans
;
Male
;
Azoospermia/therapy*
;
Testicular Neoplasms/pathology*
;
Sperm Retrieval
;
Microdissection/methods*
;
Testis/surgery*

Result Analysis
Print
Save
E-mail