1.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
2.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
3.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
4.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
5.Bone marrow mesenchymal stem cells improve bone cancer pain by inhibiting p38MAPK phosphorylation and microglia activation
Houming KAN ; Jinzhao HUANG ; Xiaodie GUI ; Wendi TIAN ; Lijun FAN ; Xuetai CHEN ; Xiaotong DING ; Liping CHEN ; Wen SHEN
The Korean Journal of Pain 2025;38(2):116-127
Background:
Bone cancer pain (BCP) is not adequately addressed by current treatment methods, making the exploration of effective management strategies a topic of significant interest. Bone marrow mesenchymal stem cells (BMSCs) seem to be a potential way for managing BCP, yet little is known about the mechanisms underlying the efficacy of this potential treatment.
Methods:
We established the male C57BL/6 mice BCP models. Behavioral tests, X-ray, bone histology, western blotting, and immunofluorescence were used to verify the analgesic effect of BMSCs.
Results:
Intramedullary injection of Lewis lung carcinoma cells into the femur successfully generated the mice BCP models. The number of c-Fos-positive neurons and phosphorylated mitogen-activated protein kinase (MAPK) proteins in the spinal dorsal horn of the BCP mice increased. Intrathecal injection of BMSCs temporarily improved the BCP mice’s mechanical and thermal hyperalgesia without affecting motor function. This effect may be related to inhibiting spinal microglia and p-p38 MAPK activation. The analgesic effect of BMSCs may be related to the homing effect mediated by CXCR4.
Conclusions
Intrathecal injection of BMSCs can temporarily inhibit mechanical and thermal hyperalgesia in BCP mice without affecting motor function. This effect may be related to the inhibition of p-p38 protein expression and the inhibition of microglia but not to p-ERK and p-JNK.
6.Chemical constituents of Sophorae Flavescentis Radix and its residue based on UPLC-Q-TOF-MS.
Qian-Wen LIU ; Rong-Qing ZHU ; Qian-Nan HU ; Xiang LI ; Guang YANG ; Zi-Dong QIU ; Zhi-Lai ZHAN ; Tie-Gui NAN ; Mei-Lan CHEN ; Li-Ping KANG
China Journal of Chinese Materia Medica 2025;50(3):708-718
Sophorae Flavescentis Radix is one of the commonly used traditional Chinese medicine in China, and a large amount of pharmaceutical residue generated during its processing and production is discarded as waste, which not only wastes resources but also pollutes the environment. Therefore, elucidating the chemical composition of the residue of Sophorae Flavescentis Radix and the differences between the residue and Sophorae Flavescentis Radix itself is of great significance for the comprehensive utilization of the residue. This study, based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) technology combined with multivariate statistical methods, provides a thorough characterization, identification, and differential analysis of the overall components of Sophorae Flavescentis Radix and its residue. Firstly, 61 compounds in Sophorae Flavescentis Radix were rapidly identified based on their precise molecular weight, fragment ions, and compound abundance, using a self-constructed compound database. Among them, 41 compounds were found in the residue, mainly alkaloids and flavonoids. Secondly, through principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA), 15 key compounds differentiating Sophorae Flavescentis Radix from its residue were identified. These included highly polar alkaloids, such as oxymatrine and oxysophocarpine, which showed significantly reduced content in the residue, and less polar flavonoids, such as kurarinone and kuraridin, which were more abundant in the residue. In summary, this paper clarifies the overall composition, structure, and content differences between Sophorae Flavescentis Radix and its residue, suggesting that the residue of Sophorae Flavescentis Radix can be used as a raw material for the extraction of its high-activity components, with promising potential for development and application in cosmetics and daily care. This research provides a scientific basis for the future comprehensive utilization of Sophorae Flavescentis Radix and its residue.
Drugs, Chinese Herbal/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Mass Spectrometry/methods*
;
Sophora/chemistry*
;
Flavonoids/chemistry*
;
Alkaloids/chemistry*
7.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
8.Qingjie Fuzheng Granule prevents colitis-associated colorectal cancer by inhibiting abnormal activation of NOD2/NF-κB signaling pathway mediated by gut microbiota disorder.
Bin HUANG ; Honglin AN ; Mengxuan GUI ; Yiman QIU ; Wen XU ; Liming CHEN ; Qiang LI ; Shaofeng YAO ; Shihan LIN ; Tatyana Aleksandrovna KHRUSTALEVA ; Ruiguo WANG ; Jiumao LIN
Chinese Herbal Medicines 2025;17(3):500-512
OBJECTIVE:
This study investigates the efficacy and mechanisms of Qingjie Fuzheng Granules (QFG) in inhibiting colitis-associated colorectal cancer (CAC) development via RNA sequencing (RNA-seq) and 16S ribosomal RNA (rRNA) correlation analysis.
METHODS:
CAC was induced in BALB/c mice using azoxymethane (AOM) and dextran sulfate sodium (DSS), and QFG was administered orally to the treatment group. The effects of QFG on CAC were evaluated using disease index, histology, and serum T-cell ratios. RNA-seq and 16S rRNA analysis assessed the transcriptome and microbiome change. Key pharmacodynamic pathways were identified by integrating these data and confirmed via Western blotting and immunofluorescence. The link between microbiota and CAC-related markers was explored using linear discriminant analysis effect size and Spearman correlation analysis.
RESULTS:
Long-term treatment with QFG prevented AOM/DSS-induced CAC formation, reduced levels of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, and interferon γ (IFN-γ), and increased CD3+ and CD4+/CD8+ T cells ratio, without causing hepatic or renal toxicity. A 16S rRNA analysis revealed that QFG rebalanced the Firmicutes/Bacteroidetes ratio and mitigated AOM/DSS-induced microbiota disturbances. Transcriptomics and Western blotting analysis identified the nucleotide-binding oligomerization domain-containing protein 2 (NOD2)/nuclear factor kappa-B (NF-κB) pathway as key for QFG's treatment against CAC. Furthermore, QFG decreased the abundance of Bacilli, Bacillales, Staphylococcaceae, Staphylococcus, Lactobacillales, Aerococcus, Alloprevotella, and Akkermansia, while increasing Clostridiales, Lachnospiraceae, Lachnospiraceae_NK4A136_group, Ruminococcaceae, and Muribaculaceae, which were highly correlated with CAC-related markers or NOD2/NF-κB pathway.
CONCLUSION
By mapping the relationships between CAC, immune responses, microbiota, and key pathways, this study clarifies the mechanism of QFG in inhibiting CAC, highlighting its potential for clinical use as preventive therapy.
9.Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Lu XUE ; Tiancai CHANG ; Jiacheng GUI ; Zimu LI ; Heyu ZHAO ; Binqian ZOU ; Junnan LU ; Mei LI ; Xin WEN ; Shenghua GAO ; Peng ZHAN ; Lijun RONG ; Liqiang FENG ; Peng GONG ; Jun HE ; Xinwen CHEN ; Xiaoli XIONG
Protein & Cell 2025;16(8):705-723
Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp domain. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
Nipah Virus/chemistry*
;
Cryoelectron Microscopy
;
Viral Proteins/genetics*
;
RNA-Dependent RNA Polymerase/genetics*
;
Phosphoproteins/genetics*
;
Humans
;
Models, Molecular
;
Protein Binding
10.Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex.
Yu-Die YANG ; Wen ZHONG ; Ming CHEN ; Qing-Chen TANG ; Yan LI ; Lu-Lu YAO ; Mei-Qi ZHOU ; Neng-Gui XU ; Shuai CUI
Journal of Integrative Medicine 2025;23(5):537-547
OBJECTIVE:
To elucidate the specific mechanisms by which electroacupuncture (EA) alleviates anxiety and fear behaviors associated with posttraumatic stress disorder (PTSD), focusing on the role of lipocalin-2 (Lcn2).
METHODS:
The PTSD mouse model was subjected to single prolonged stress and shock (SPS&S), and the animals received 15 min sessions of EA at Shenmen acupoint (HT7). Behavioral tests were used to investigate the effects of EA at HT7 on anxiety and fear. Western blotting and enzyme-linked immunosorbent assay were used to quantify Lcn2 and inflammatory cytokine levels in the prefrontal cortex (PFC). Additionally, the activity of PFC neurons was evaluated by immunofluorescence and in vivo electrophysiology.
RESULTS:
Mice subjected to SPS&S presented increased anxiety- and fear-like behaviors. Lcn2 expression in the PFC was significantly upregulated following SPS&S, leading to increased expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6 and suppression of PFC neuronal activity. However, EA at HT7 inhibited Lcn2 release, reducing neuroinflammation and hypoexcitability in the PFC. Lcn2 overexpression mitigated the effects of EA at HT7, resulting in anxiety- and fear-like behaviors.
CONCLUSION
EA at HT7 can ameliorate PTSD-associated anxiety and fear, and its mechanism of action appears to involve the inhibition of Lcn2-mediated neural activity and inflammation in the PFC. Please cite this article as: Yang YD, Zhong W, Chen M, Tang QC, Li Y, Yao LL, et al. Electroacupuncture alleviates behaviors associated with posttraumatic stress disorder by modulating lipocalin-2-mediated neuroinflammation and neuronal activity in the prefrontal cortex. J Integr Med. 2025; 23(5):537-547.
Electroacupuncture
;
Stress Disorders, Post-Traumatic/metabolism*
;
Animals
;
Lipocalin-2/metabolism*
;
Prefrontal Cortex/physiopathology*
;
Male
;
Mice
;
Neurons/physiology*
;
Disease Models, Animal
;
Fear
;
Behavior, Animal
;
Mice, Inbred C57BL
;
Neuroinflammatory Diseases/metabolism*
;
Anxiety/therapy*
;
Acupuncture Points

Result Analysis
Print
Save
E-mail