1.A novel treatment for weight reduction by the recombinant "Pichia pastoris" yeast expressing the hybrid protein of "irisin-furin-transferrin".
Mahsa JALILI ; Zahra BAZI ; Azita HEKMATDOOST
Journal of Integrative Medicine 2016;14(1):1-4
Obesity is a major health problem across the world, but there are few ways to effectively treat or manage it in the long term. Researchers are searching for more convenient, cost-effective and noninvasive therapies for overweight and obese people. Recent studies have illustrated that the microbiome of the body's different organs can be used as a vehicle for in-situ gene therapy. We suggest that the recombinant form of "Pichia pastoris" yeast expressing the hybrid protein of "irisin-furin-transferrin" under the control of the enolase 1 promoter is a new nutraceutical strategy to absorb fewer calories from intestinal nutrients, and induce a higher metabolic rate to expend more calories, similar to that from engaging in physical activity. By comparison, this method can be a long-term, noninvasive treatment and can be used for obese patients who have movement limitations.
Fibronectins
;
genetics
;
Furin
;
genetics
;
Genetic Therapy
;
Humans
;
Obesity
;
therapy
;
Pichia
;
genetics
;
Recombinant Fusion Proteins
;
genetics
;
Transferrin
;
genetics
;
Weight Loss
2.Effects of visfatin gene polymorphisms on glycolipid metabolism and exercise-induced weight reduction in obesity.
Acta Physiologica Sinica 2012;64(1):96-100
Visfatin, also named nicotinamide phosphoribosyl transferase (NAMPT), is a cytokine secreted from adipose tissue. Visfatin can regulate immune action and is involved in the NAD+ salvage pathway. In addition, recent researches have shown that visfatin helps the regulation of glucose and lipid metabolism, especially in exercise-induced weight reduction for obesity. The aim of this review is to provide an overview of the contribution of visfatin gene polymorphisms to glucose and lipid metabolism and exercise-induced weight reduction in obesity.
Exercise
;
physiology
;
Glycolipids
;
metabolism
;
Humans
;
Nicotinamide Phosphoribosyltransferase
;
genetics
;
physiology
;
Obesity
;
genetics
;
metabolism
;
Polymorphism, Genetic
;
Weight Loss
;
genetics
3.Fatty acid synthase and hormone-sensitive lipase expression in liver are involved in zinc-alpha2-glycoprotein-induced body fat loss in obese mice.
Feng-Ying GONG ; Jie-Ying DENG ; Hui-Juan ZHU ; Hui PAN ; Lin-Jie WANG ; Hong-Bo YANG
Chinese Medical Sciences Journal 2010;25(3):169-175
OBJECTIVETo explore the effects of zinc-alpha2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HFD)-induced obesity in mice and the possible mechanism.
METHODSThirty-six male mice were fed with standard food (SF) (n = 9) and HFD (n = 27), respectively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone-sensitive lipase (HSL) in liver tissue were determined by reverse transcription-polymerase chain reaction.
RESULTSSerum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51 +/- 0.10 AU vs. 0.75 +/- 0.07 AU, P < 0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r = -0.56, P < 0.001), epididymal fat mass (r = -0.67, P < 0.001), percentage of epididymal fat (r = -0.65, P < 0.001), and increased weight (r = -0.57, P < 0.001) in simple SF- and HFD-fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididymal fat. Furthermore, FAS mRNA expression decreased (P < 0.01) and HSL mRNA expression increased (P < 0.001) in the liver in ZAG over-expressing mice.
CONCLUSIONSZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and increased HSL expression in the liver of obese mice.
Adipose Tissue ; metabolism ; Animals ; Fatty Acid Synthases ; genetics ; physiology ; Liver ; enzymology ; Male ; Mice ; Mice, Obese ; Seminal Plasma Proteins ; blood ; physiology ; Sterol Esterase ; genetics ; physiology ; Weight Loss
4.Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet.
Yong ZHANG ; Qing XU ; Ying Hua LIU ; Xin Sheng ZHANG ; Jin WANG ; Xiao Ming YU ; Rong Xin ZHANG ; Chao XUE ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2015;28(2):97-104
OBJECTIVETo investigate activation of brown adipose tissue (BAT) stimulated by medium-chain triglyceride (MCT).
METHODS30 Male C57BL/6J obese mice induced by fed high fat diet (HFD) were divided into 2 groups, and fed another HFD with 2% MCT or long-chain triglyceride (LCT) respectively for 12 weeks. Body weight, blood biochemical variables, interscapular brown fat tissue (IBAT) mass, expressions of mRNA and protein of beta 3-adrenergic receptors (β3-AR), uncoupling protein-1 (UCP1), hormone sensitive lipase (HSL), protein kinase A (PKA), and adipose triglyceride lipase (ATGL) in IBAT were measured.
RESULTSSignificant decrease in body weight and body fat mass was observed in MCT group as compared with LCT group (P<0.05) after 12 weeks. Greater increases in IBAT mass was observed in MCT group than in LCT group (P<0.05). Blood TG, TC, LDL-C in MCT group were decreased significantly, meanwhile blood HDL-C, ratio of HDL-C/LDL-C and norepinephrine were increased markedly. Expressions of mRNA and protein of β3-AR, UCP1, PKA, HSL, ATGL in BAT were greater in MCT group than in LCT group (P<0.05).
CONCLUSIONOur results suggest that MCT stimulated the activation of BAT, possible via norepinephrine pathway, which might partially contribute to reduction of the body fat mass in obese mice fed high fat diet.
Adipose Tissue, Brown ; drug effects ; Adiposity ; drug effects ; Animals ; Dietary Fats ; administration & dosage ; pharmacology ; Ion Channels ; genetics ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Triglycerides ; chemistry ; pharmacology ; Uncoupling Protein 1 ; Weight Loss
5.Impact of ENPP1 K121Q on Change of Insulin Resistance after Web-Based Intervention in Korean Men with Diabetes and Impaired Fasting Glucose.
Ji Yeon KANG ; Sook Hee SUNG ; Yeon Ju LEE ; Tae In CHOI ; Seung Jin CHOI
Journal of Korean Medical Science 2014;29(10):1353-1359
Ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) gene has been studied in relation to type 2 diabetes mellitus (T2DM) and insulin resistance (IR). We hypothesized that the difference in genotype may be one of the factors that affect the outcome of intervention. We genotyped 448 men with fasting glucose> or =5.6 mM/L, including 371 in subjects with K allele (KK) (69 control group [CG]; and 302 intervention group [IG]) and 77 in subjects with Q allele (KQ+QQ) (13 CG and 64 IG). The web-based intervention based on a lifestyle modification was delivered by e-mail once a month for 10 months. In the KK, IG demonstrated significantly decreased levels of fasting serum insulin (FSI) as compared to CG and homeostasis model of assessment of insulin resistance (HOMA-IR). In the KQ+QQ IG group, hemoglobin A1c (HbA1c), FSI and HOMA-IR were significantly decreased, and showed further reduction in the HOMA-IR than KQ+QQ CG. After analysis of covariance, K121Q did significantly influence the change of HbA1c in CG after appropriate adjustment. In a multivariate model, BMI change predicted HOMA-IR change (adjusted beta=0.801; P=0.022) in KK IG subjects with T2DM. ENPP1 K121Q did not influence the change in IR. However, individuals with T2DM carrying the K121 variant are very responsive to the effect of BMI reduction on HOMA-IR.
Alleles
;
Asian Continental Ancestry Group/genetics
;
Blood Glucose/analysis
;
Body Mass Index
;
Diabetes Mellitus, Type 2/blood/*genetics
;
*Food Habits
;
Hemoglobin A, Glycosylated/*analysis
;
Humans
;
Insulin Resistance/*genetics
;
Internet
;
Life Style
;
Male
;
Middle Aged
;
Phosphoric Diester Hydrolases/*genetics
;
Pyrophosphatases/*genetics
;
Republic of Korea
;
Weight Loss/genetics
6.H5 and H9 subtypes of Avian Influenza Viruses are Real Threat To Humans.
Infection and Chemotherapy 2004;36(Suppl 1):S6-S9
Recent outbreaks of H5N1 avian influenza viruses in most Asian countries alert the imminent pandemic. Twenty-three humans out of 34 confirmed cases were dead of H5N1 infections. H9N2 avian influenza viruses are widespread in poultry in most Asian countries and infected humans in 1999 and 2003. H9N2 or H5N1 influenza viruses may cause a next pandemic. The extensive surveillance in poultry and pigs are very important for predicting a next pandemic. We performed the surveillance of avian influenza viruses in chickens sold in the live poultry markets. Only H9N2 subtypes of influenza viruses were isolated from chickens in the Korean live bird markets. Serological surveillance in chickens showed that chickens were infected with over 50% with H9N2 viruses. Antigenic analysis showed that current circulating H9N2 influenza viruses are distinct from those of Hong Kong and 1996 Korean isolates from chicken farms. Serological surveillance of pigs against H9N2 influenza viruses showed that over 20% are positive. To prepare the vaccine of H5N1 avian influenza viruses, reassortant viruses were made using the available reverse genetics. The efficacy and safety test of H5N1 candidate vaccine in monkeys showed that neutralization antibody were induced and no side effects such as fever and weight loss were observed.
Animals
;
Asian Continental Ancestry Group
;
Birds
;
Chickens
;
Disease Outbreaks
;
Fever
;
Haplorhini
;
Hong Kong
;
Humans*
;
Influenza A Virus, H9N2 Subtype
;
Influenza in Birds*
;
Orthomyxoviridae
;
Pandemics
;
Poultry
;
Reassortant Viruses
;
Reverse Genetics
;
Swine
;
Weight Loss
7.H5 and H9 subtypes of Avian Influenza Viruses are Real Threat To Humans.
Infection and Chemotherapy 2004;36(Suppl 1):S6-S9
Recent outbreaks of H5N1 avian influenza viruses in most Asian countries alert the imminent pandemic. Twenty-three humans out of 34 confirmed cases were dead of H5N1 infections. H9N2 avian influenza viruses are widespread in poultry in most Asian countries and infected humans in 1999 and 2003. H9N2 or H5N1 influenza viruses may cause a next pandemic. The extensive surveillance in poultry and pigs are very important for predicting a next pandemic. We performed the surveillance of avian influenza viruses in chickens sold in the live poultry markets. Only H9N2 subtypes of influenza viruses were isolated from chickens in the Korean live bird markets. Serological surveillance in chickens showed that chickens were infected with over 50% with H9N2 viruses. Antigenic analysis showed that current circulating H9N2 influenza viruses are distinct from those of Hong Kong and 1996 Korean isolates from chicken farms. Serological surveillance of pigs against H9N2 influenza viruses showed that over 20% are positive. To prepare the vaccine of H5N1 avian influenza viruses, reassortant viruses were made using the available reverse genetics. The efficacy and safety test of H5N1 candidate vaccine in monkeys showed that neutralization antibody were induced and no side effects such as fever and weight loss were observed.
Animals
;
Asian Continental Ancestry Group
;
Birds
;
Chickens
;
Disease Outbreaks
;
Fever
;
Haplorhini
;
Hong Kong
;
Humans*
;
Influenza A Virus, H9N2 Subtype
;
Influenza in Birds*
;
Orthomyxoviridae
;
Pandemics
;
Poultry
;
Reassortant Viruses
;
Reverse Genetics
;
Swine
;
Weight Loss
8.Reduning Injection protects flu-infected mice by inhibiting infiltration of inflammatory cells in lung and down-regulating cytokine storm.
Xiao-Lan YE ; Chen-Chen TANG ; Hui LIU ; You HU ; Tian-Nan XIANG ; Yue-Juan ZHENG
China Journal of Chinese Materia Medica 2022;47(17):4698-4706
This study aimed to explore the protective effect of Reduning Injection(RDN) on mice infected by influenza virus A/PR/8(PR8) and its immune regulatory roles during viral infection. In in vivo experiments, female C57 BL/6 mice were randomly divided into phosphate buffered saline(PBS) group, PR8-infected group, oseltamivir treatment group(OSV) and RDN treatment group. After 2 h of PR8 infection, mice in the oseltamivir group were gavaged with oseltamivir 30 mg·kg~(-1), and those in the RDN treatment group were injected intraperitoneally with RDN 1.5 mL·kg~(-1)once per day for seven consecutive days. The body weight of mice in each group was recorded at the same time every morning for 16 consecutive days. The line chart of body weight change was created to analyze the protective effect of RDN on flu-infected mice. The relative mRNA expression of different cytokines(IL-6, TNF-α, MCP-1, IL-1β, MIP-2, IP-10 and IL-10) in lung samples of flu-infected mice was detected by PCR. Flow cytometry was utilized to analyze the composition of immune cells of mouse BALF samples on day 5 after infection. Mouse macrophage cell line RAW264.7 was planted and treated by different concentrations of RDN(150, 300, 600 μg·mL~(-1)) for 24 h or 48 h, and cell proliferation was detected by CCK-8 assay. RAW264.7 cells and mouse primary peritoneal macrophages were stimulated with synthetic single stranded RNA(R837), which elicited the inflammatory response by mimicking the infection of single-stranded RNA viruses. The expression of cytokines and chemokines in the supernatants of above culture system was detected by ELISA and qPCR. On days 4, 5, 6, 7 and 15 after infection, the body weight loss of mice in the RDN treatment group was alleviated compared with that of PR8-infected mice(P<0.05). RDN treatment obviously reduced lung index and the production of IL-6, TNF-α, MCP-1 and MIP-2 in lung tissues of flu-infected mice(P<0.05). The proportions of macrophages, neutrophils and T cells in mouse BALF samples were analyzed by flow cytometry, and compared with PR8-infected mice, RDN decreased the proportion of macrophages in BALF of flu-infected mice(P<0.05), and the proportion of T cells was recovered dramatically(P<0.001). In CCK-8 assay, the concentrations of RDN(150, 300, 600 μg·mL~(-1)) failed to cause cytotoxicity to RAW264.7 cells. In addition, RDN lowered the expression of inflammatory cytokines such as IL-6, TNF-α,MCP-1, IL-1β, RANTES, and IP-10 and even anti-inflammatory cytokine IL-10 in R837-induced macrophages. RDN reduced the infiltration of inflammatory macrophages and the production of excessive inflammatory cytokines, alleviated the body weight loss of flu-infected mice. What's more, RDN restored the depletion of T cells, which might prevent secondary infection and deteriorative progression of the disease. Taken together, RDN may inhibit cytokine production and therefore down-regulate cytokine storm during the infection of influenza virus.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Body Weight
;
Chemokine CCL5/pharmacology*
;
Chemokine CXCL10/pharmacology*
;
Cytokine Release Syndrome
;
Cytokines/genetics*
;
Drugs, Chinese Herbal
;
Female
;
Imiquimod/pharmacology*
;
Interleukin-10
;
Interleukin-6
;
Lung
;
Mice
;
Mice, Inbred C57BL
;
Oseltamivir/pharmacology*
;
Phosphates/pharmacology*
;
RNA
;
RNA, Messenger
;
Sincalide/pharmacology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Weight Loss
9.Oral immunization of mice with vaccine of attenuated Salmonella typhimurium expressing Helicobacter pylori urease B subunit.
Xing-Long YANG ; Wen-Chao LIU ; Wu-Wei YANG ; Dong ZHONG ; Yu-Hu LIU ; Jing-Dong ZHANG ; Jian-Hui JIANG ; Shan-Shan LI
Biomedical and Environmental Sciences 2005;18(6):411-418
OBJECTIVETo prepare the live recombinant vaccine of attenuated Salmonella typhimurium SL3261 expressing Helicobacter pylori (H. pylori) B subunit (UreB) and to determine whether it could be used as an oral vaccine against H. pylori infection.
METHODSUsing genomic DNA of H. pylori Sydney strain (SSI) as template, the H. pylori UreB gene fragment was amplified by PCR and subcloned into the expression vector pTC01. The recombinant plasmid pTC01-UreB was then transferred into LB5000 to obtain modified forms, and further conversed into the attenuated Salmonella typhimurium SL3261 to obtain recombinant SL3261/pCT01-UreB as an oral immunization reagent, which was then used to orally immunize Balb/c mice twice at a three-week interval. Twelve weeks later, anti-UreB IgA antibodies in intestinal fluid and IgG antibodies in sera were determined by ELISA. The relating data in control groups (including body weight, gastric inflammation, etc.) were also collected.
RESULTSThe sequencing analysis showed that the UreB gene fragment amplified by PCR was consistent with the sequence of the H. pylori UreB gene. The restriction enzyme digestion revealed that the correct pTC01-UreB was obtained. SDS-PAGE and Western blot showed that a 61KD protein was expressed in SL3261/pTC01-UreB, which could be recognized by anti-H. pylori UreB antiserum and was absent in the control containing only Salmonella typhimurium SL3261 strain. The multiple oral immunization with SL3261/pTC01-UreB could significantly induce H. pylori specific mucosal IgA response as well as serum IgG responses. IFN-gamma and IL-10 levels were significantly increased in SL3261/pTC01-UreB group, and no obvious side effect and change in gastric inflammation were observed.
CONCLUSIONThe attenuated vaccine of Salmonella typhimurium expressing H. pylori UreB can be used as an oral vaccine against H. pylori infection.
Animals ; Antibodies, Bacterial ; blood ; Bacterial Vaccines ; administration & dosage ; immunology ; Female ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Enzymologic ; Helicobacter Infections ; immunology ; prevention & control ; Helicobacter pylori ; enzymology ; genetics ; immunology ; Immunoglobulin G ; blood ; Interferon-gamma ; metabolism ; Interleukin-10 ; metabolism ; Mice ; Mice, Inbred BALB C ; Salmonella typhimurium ; genetics ; immunology ; metabolism ; Urease ; genetics ; immunology ; metabolism ; Vaccines, Attenuated ; genetics ; immunology ; Weight Loss
10.IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.
Jin-Peng DU ; Geng WANG ; Chao-Jie HU ; Qing-Bo WANG ; Hui-Qing LI ; Wen-Fang XIA ; Xiao-Ming SHUAI ; Kai-Xiong TAO ; Guo-Bin WANG ; Ze-Feng XIA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):377-382
Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.
Animals
;
Body Weight
;
Cell Line
;
Gastrectomy
;
methods
;
Gene Expression
;
Hepatocytes
;
cytology
;
drug effects
;
metabolism
;
Interferon-gamma
;
biosynthesis
;
pharmacology
;
secretion
;
Intestine, Small
;
drug effects
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Lymph Nodes
;
drug effects
;
metabolism
;
Mesentery
;
drug effects
;
metabolism
;
Mice
;
Mice, Obese
;
Obesity
;
metabolism
;
pathology
;
surgery
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
genetics
;
metabolism
;
Weight Loss