1.ResNet-Vision Transformer based MRI-endoscopy fusion model for predicting treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A multicenter study.
Junhao ZHANG ; Ruiqing LIU ; Di HAO ; Guangye TIAN ; Shiwei ZHANG ; Sen ZHANG ; Yitong ZANG ; Kai PANG ; Xuhua HU ; Keyu REN ; Mingjuan CUI ; Shuhao LIU ; Jinhui WU ; Quan WANG ; Bo FENG ; Weidong TONG ; Yingchi YANG ; Guiying WANG ; Yun LU
Chinese Medical Journal 2025;138(21):2793-2803
BACKGROUND:
Neoadjuvant chemoradiotherapy followed by radical surgery has been a common practice for patients with locally advanced rectal cancer, but the response rate varies among patients. This study aimed to develop a ResNet-Vision Transformer based magnetic resonance imaging (MRI)-endoscopy fusion model to precisely predict treatment response and provide personalized treatment.
METHODS:
In this multicenter study, 366 eligible patients who had undergone neoadjuvant chemoradiotherapy followed by radical surgery at eight Chinese tertiary hospitals between January 2017 and June 2024 were recruited, with 2928 pretreatment colonic endoscopic images and 366 pelvic MRI images. An MRI-endoscopy fusion model was constructed based on the ResNet backbone and Transformer network using pretreatment MRI and endoscopic images. Treatment response was defined as good response or non-good response based on the tumor regression grade. The Delong test and the Hanley-McNeil test were utilized to compare prediction performance among different models and different subgroups, respectively. The predictive performance of the MRI-endoscopy fusion model was comprehensively validated in the test sets and was further compared to that of the single-modal MRI model and single-modal endoscopy model.
RESULTS:
The MRI-endoscopy fusion model demonstrated favorable prediction performance. In the internal validation set, the area under the curve (AUC) and accuracy were 0.852 (95% confidence interval [CI]: 0.744-0.940) and 0.737 (95% CI: 0.712-0.844), respectively. Moreover, the AUC and accuracy reached 0.769 (95% CI: 0.678-0.861) and 0.729 (95% CI: 0.628-0.821), respectively, in the external test set. In addition, the MRI-endoscopy fusion model outperformed the single-modal MRI model (AUC: 0.692 [95% CI: 0.609-0.783], accuracy: 0.659 [95% CI: 0.565-0.775]) and the single-modal endoscopy model (AUC: 0.720 [95% CI: 0.617-0.823], accuracy: 0.713 [95% CI: 0.612-0.809]) in the external test set.
CONCLUSION
The MRI-endoscopy fusion model based on ResNet-Vision Transformer achieved favorable performance in predicting treatment response to neoadjuvant chemoradiotherapy and holds tremendous potential for enabling personalized treatment regimens for locally advanced rectal cancer patients.
Humans
;
Rectal Neoplasms/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Male
;
Female
;
Middle Aged
;
Neoadjuvant Therapy/methods*
;
Aged
;
Adult
;
Chemoradiotherapy/methods*
;
Endoscopy/methods*
;
Treatment Outcome
2.Interactively Integrating Reach and Grasp Information in Macaque Premotor Cortex.
Junjun CHEN ; Guanghao SUN ; Yiwei ZHANG ; Weidong CHEN ; Xiaoxiang ZHENG ; Shaomin ZHANG ; Yaoyao HAO
Neuroscience Bulletin 2025;41(11):1991-2009
Reach-to-grasp movements require integrating information on both object location and grip type, but how these elements are planned and to what extent they interact remains unclear. We designed a new experimental paradigm in which monkeys sequentially received reach and grasp cues with delays, requiring them to retain and integrate both cues to grasp the goal object with appropriate hand gestures. Neural activity in the dorsal premotor cortex (PMd) revealed that reach and grasp were similarly represented yet not independent. Upon receiving the second cue, the PMd continued encoding the first, but over half of the neurons displayed incongruent modulations: enhanced, attenuated, or even reversed. Population-level analysis showed significant changes in encoding structure, forming distinct neural patterns. Leveraging canonical correlation analysis, we identified a shared subspace preserving the initial cue's encoding, contributed by both congruent and incongruent neurons. Together, these findings reveal a novel perspective on the interactive planning of reach and grasp within the PMd, providing insights into potential applications for brain-machine interfaces.
Animals
;
Motor Cortex/physiology*
;
Hand Strength/physiology*
;
Macaca mulatta
;
Psychomotor Performance/physiology*
;
Neurons/physiology*
;
Male
;
Cues
;
Movement/physiology*
;
Gestures
3.Overexpression of SULT1E1 alleviates salt-processed Psoraleae Fructus-induced cholestatic liver damage.
Yu WU ; Yan XU ; Hao CAI ; Zhengying HUA ; Meimei LUO ; Letao HU ; Nong ZHOU ; Xinghong WANG ; Weidong LI
Chinese Herbal Medicines 2025;17(2):392-403
OBJECTIVE:
Salt-processed Psoraleae Fructus (SPF) is widely used as a phytoestrogen-like agent in the treatment of osteoporosis. However, due to improper clinical use or misuse, resulting in liver damage. In this study, network pharmacology was employed to analyze the mechanism of cholestatic liver damage. An adeno-associated virus overexpressing SULT1E1 (rAAV8-SULT1E1) was constructed and the hepatotoxicity of SPF, psoralen, and isopsoralen was determined.
METHODS:
By utilizing three databases inclding TCMSP, TCMID, and BATMAN- TCM, the targets of the three databases were summarized, and a total of 45 psoralen compounds were included. Network pharmacology analysis was then performed. The adenoviral vectors were injected into the tail vein of C57BL6 mice to elucidate the role of SULT1E1 in SPF-induced cholestasis-mediated hepatotoxicity in vivo. SPF (10 g/kg), psoralen, and isopsoralen (50 mg/kg each) were intragastrically administered to mice for 30 d. B-ultrasound and samples were collected and examined for follow-up experiments.
RESULTS:
A total of 854 targets were predicted for 45 active components, with 151 cholestasis-mediated hepatotoxicity-related disease targets obtained for SPF. A total of 126 pathways were enriched based on KEGG pathway analysis, with the "estrogen signaling pathway" identified as one of the top 20 pathways. In terms of pathological hepatic changes, treated mice had visually swollen hepatocytes, dilated bile ducts, and elevated serum biochemical markers, which were more prominent in mice treated with isopsoralen than in those treated with other compounds. Notably, the overexpression of SULT1E1 could reverse liver damage in each treatment group. B-ultrasound was used to observe the size of the gallbladder in vivo. The size of the gallbladder was found to significantly increase on day 30 after treatment in the SPF-, psoralen-, and isopsoralen-treated groups, especially the SPF group. Compared with the expression levels in the negative control group (rAAV8-empty + con), the expression levels of FXR, Mrp2, Bsep, SULT1E1, SULT2A1, Ntcp, and Nrf2 decreased, whereas those of CYP7a1 and IL-6 increased in the SPF-, psoralen-, and isopsoralen-treated groups.
CONCLUSION
The overexpression of SULT1E1 could alleviate the decreased or increased expression of indicators, indicating that SULT1E1 is an important target gene for SPF-induced liver damage. The severity of liver damage was significantly lower in the rAAV8-SULT1E1 groups than in the rAAV8-empty groups.
4.Identification, characterization, substrate binding mode prediction, and modification of a novel amidohydrolase from Microbulbifer thermotolerans.
Nana XU ; Mingzhu YAN ; Hao WANG ; Xiao LIANG ; Weidong LIU ; Huimin QIN ; Jian GAO
Chinese Journal of Biotechnology 2025;41(9):3567-3578
Ochratoxin A (OTA) is ubiquitous in the food and feed fields. It has strong hepatotoxicity and nephrotoxicity, seriously threatening the health of humans and animals. Enzymatic degradation of mycotoxins is considered to be a promising method to control mycotoxin contaminations. In this study, a new ochratoxin A amidohydrolase from Microbulbifer thermotolerans (MiADH) was obtained. After heterologous expression in Escherichia coli and purification, the recombinant protein was studied regarding the hydrolysis activity, hydrolysis products, enzymatic properties, and substrate binding mode. MiADH can degrade OTA into ochratoxin α (OTα) and phenylalanine, demonstrating a detoxifying ability. It demonstrated the best performance at 70 ℃ and pH 8.0, and Cu2+ had the strongest inhibitory effect on the activity of MiADH. MiADH with good thermal stability exhibited huge potential for industrial application. Rational design guided by three-dimensional structural models and substrate docking analysis revealed the important amino acids affecting substrate binding and obtained multiple mutants with improved activity. Among these mutants, V324A had the highest activity, which was 4.2-fold that of the wild type. The identification of MiADH enriches the ochratoxin A degradation enzyme library and provides a new candidate enzyme for the biological detoxification of ochratoxin A in the food and feed industry.
Amidohydrolases/chemistry*
;
Ochratoxins/metabolism*
;
Substrate Specificity
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Actinomycetales/genetics*
5.Clinical guidelines for indications, techniques, and complications of autogenous bone grafting.
Jianzheng ZHANG ; Shaoguang LI ; Hongying HE ; Li HAN ; Simeng ZHANG ; Lin YANG ; Wenxing HAN ; Xiaowei WANG ; Jie GAO ; Jianwen ZHAO ; Weidong SHI ; Zhuo WU ; Hao WANG ; Zhicheng ZHANG ; Licheng ZHANG ; Wei CHEN ; Qingtang ZHU ; Tiansheng SUN ; Peifu TANG ; Yingze ZHANG
Chinese Medical Journal 2024;137(1):5-7
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Relationship between prognostic nutritional index and myocardial injury after non-cardiac surgery
Zhao LI ; Hao LI ; Chang LIU ; Siyi YAO ; Jingsheng LOU ; Yanhong LIU ; Jiangbei CAO ; Weidong MI
Chinese Journal of Anesthesiology 2024;44(11):1317-1322
Objective:To evaluate the relationship between prognostic nutritional index (PNI) and myocardial injury after non-cardiac surgery (MINS).Methods:This was a retrospective cohort study. The clinical data of adult patients ( n=2 203) who underwent liver resection surgery with general anesthesia at our center from January 2016 to August 2019 were retrospectively collected. The predictive value of preoperative PNI for MINS and the optimal cut-off value of PNI were evaluated and determined according to the receiver operating characteristic curve, and the patients were divided into 2 groups based on the cut-off value: high PNI group and low PNI group. Logistic regression analyses were applied to investigate the relationship between preoperative PNI and MINS. According to the same inclusion and exclusion criteria, the clinical data of patients at our center from January 2022 to December 2023 were collected as the validation set ( n=2 525), and they were grouped using the same PNI cutoff value. Logistic regression analyses were used to verify the relationship between PNI and MINS. Results:The receiver operating characteristic curve analysis showed that the area under the curve of preoperative PNI for predicting MINS was 0.651 (95% confidence interval [ CI] 0.602-0.699), with an optimal cut-off value of 46.193, and the specificity and sensitivity were 0.729 and 0.519 respectively. The integer 46 was considered as the optimal cutoff value for PNI, and the patients were divided into low PNI group (PNI<46, n=606) and high PNI group (PNI≥46, n=1 597). Both univariate and multivariate logistic regression analyses showed that preoperative low PNI was an independent risk factor for the occurrence of MINS (univariate: OR=2.873, 95% CI 2.063-4.003, P<0.001; multivariate: OR=1.844, 95% CI 1.241-2.600, P=0.003). The results in the validation set were still robust (univariate: OR=2.694, 95% CI 1.890-3.833, P<0.001; multivariate: OR=1.602, 95% CI 1.071-2.385, P=0.021). Conclusions:Preoperative low-level PNI is an independent risk factor for MINS, with a certain predictive value.
8.Study the change of serum osteosclerotin and Dickkopf-3 expression in elderly patients with intertrochanteric fracture
Hao ZHANG ; Qing YU ; Jingxuan ZHANG ; Ping LIU ; Yuan TIAN ; Yongming YANG ; Weidong YUAN
Chinese Journal of Postgraduates of Medicine 2023;46(2):164-167
Objective:To investigate the changes of perioperative serum osteosclerosis protein (SOST) and Dickkopf-3 (Dkk-3) in elderly patients with femoral intertrochanteric fracture.Methods:Thirty elderly patients who underwent reduction and fixation of femoral intertrochanteric fracture in Baoding Second Hospital from May 2017 to December 2017 were prospectively selected as the observation group; 30 healthy subjects in the same period were selected as the healthy control group. Enzyme linked immunosorbent assay (ELISA) was used to detect the expression of serum SOST and Dkk-3 at 1 d before operation and at 1, 3, 5 d after operation and compared with the same period of healthy physical examination(normal control group). Spearman rank correlation analysis was used to analyze the correlation between SOST and Dkk-3 and disease activity score (ASDAS) and spinal imaging evaluation score (mSASSS).Results:There was a positive correlation between Dkk-3 level and ASDAS score in the observation group ( r = 0.331, P = 0.012); the level of SOST was negatively correlated with the scores of ASDAS ( r = - 0.162, P = 0.017). The levels of serum SOST and Dkk-3 in the observation group were lower than those in the healthy control group: 1.29(1.00, 2.40) μg/L vs. 1.96(1.63, 2.65) μg/L, (6.11 ± 1.15) μg/L vs. (9.81 ± 1.76) μg/L, P<0.05. The levels of serum SOST and Dkk-3 in the observation group increased first and then decreased on the 1st, 3rd and 5th day after operation. The level of serum Dkk-3 increased to the highest level on the 3rd day after operation, and then decreased gradually, but it was still slightly higher than that before operation. The level of serum SOST in the observation group increased to the highest level 1st day after operation, and decreased at 3rd and 5th day after operation. The perioperative serum levels of SOST and Dkk-3 in the observation group were positively correlated, the correlation coefficient was the largest at 1 day after operation ( r = 0.571) and the lowest before operation ( r = 0.119). Conclusions:The perioperative serum levels of SOST and Dkk-3 in elderly patients with femoral intertrochanteric fracture increased first and then decreased. The change of serum SOST level is more sensitive and can be used as a sensitive index to reflect the change of osteogenic ability.
9.Expression, purification and characterization of a novel bis (hydroxyethyl) terephthalate hydrolase from Hydrogenobacter thermophilus.
Yangyang CHEN ; Jian GAO ; Yipei ZHAO ; Hao WANG ; Xu HAN ; Jie ZHANG ; Qun GU ; Ying HOU ; Weidong LIU
Chinese Journal of Biotechnology 2023;39(5):2015-2026
PET (polyethylene terephthalate) is one of the most important petrochemicals that is widely used in mineral water bottles, food and beverage packaging and textile industry. Because of its stability under environmental conditions, the massive amount of PET wastes caused serious environmental pollution. The use of enzymes to depolymerize PET wastes and upcycling is one of the important directions for plastics pollution control, among which the key is the depolymerization efficiency of PET by PET hydrolase. BHET (bis(hydroxyethyl) terephthalate) is the main intermediate of PET hydrolysis, its accumulation can hinder the degradation efficiency of PET hydrolase significantly, and the synergistic use of PET hydrolase and BHET hydrolase can improve the PET hydrolysis efficiency. In this study, a dienolactone hydrolase from Hydrogenobacter thermophilus which can degrade BHET (HtBHETase) was identified. After heterologous expression in Escherichia coli and purification, the enzymatic properties of HtBHETase were studied. HtBHETase shows higher catalytic activity towards esters with short carbon chains such as p-nitrophenol acetate. The optimal pH and temperature of the reaction with BHET were 5.0 and 55 ℃, respectively. HtBHETase exhibited excellent thermostability, and retained over 80% residual activity after treatment at 80 ℃ for 1 hour. These results indicate that HtBHETase has potential in biological PET depolymerization, which may facilitate the enzymatic degradation of PET.
Hydrolases/metabolism*
;
Bacteria/metabolism*
;
Hydrolysis
;
Polyethylene Terephthalates/metabolism*
10.Engineering the plastic degradation enzyme Ple629 from marine consortium to improve its thermal stability.
Yipei ZHAO ; Hao WANG ; Pan WU ; Zhishuai LI ; Fufeng LIU ; Qun GU ; Weidong LIU ; Jian GAO ; Xu HAN
Chinese Journal of Biotechnology 2023;39(5):2040-2052
Petrochemical-derived polyester plastics such as polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) have been widely used. However, the difficulty to be degraded in nature (PET) or the long biodegradation cycle (PBAT) resulted in serious environmental pollution. In this connection, treating these plastic wastes properly becomes one of the challenges of environment protection. From the perspective of circular economy, biologically depolymerizing the waste of polyester plastics and reusing the depolymerized products is one of the most promising directions. Recent years have seen many reports on polyester plastics degrading organisms and enzymes. Highly efficient degrading enzymes, especially those with better thermal stability, will be conducive to their application. The mesophilic plastic-degrading enzyme Ple629 from the marine microbial metagenome is capable of degrading PET and PBAT at room temperature, but it cannot tolerate high temperature, which hampers its potential application. On the basis of the three-dimensional structure of Ple629 obtained from our previous study, we identified some sites which might be important for its thermal stability by structural comparison and mutation energy analysis. We carried out transformation design, and performed expression, purification and thermal stability determination of the mutants. The melting temperature (Tm) values of mutants V80C and D226C/S281C were increased by 5.2 ℃ and 6.9 ℃, respectively, and the activity of mutant D226C/S281C was also increased by 1.5 times compared with that of the wild-type enzyme. These results provide useful information for future engineering and application of Ple629 in polyester plastic degradation.
Plastics/metabolism*
;
Polyethylene Terephthalates/metabolism*
;
Biodegradation, Environmental
;
Metagenome

Result Analysis
Print
Save
E-mail