1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Overview of Preparation Characteristics and Application of the Mofeng Ointment Formulation (摩风膏方) in the Dunhuang Manuscript Unnamed Treatise on the Pulse (《亡名氏脉经》)
Tingting DOU ; Yuting WEI ; Cui MA ; Xingke YAN
Journal of Traditional Chinese Medicine 2025;66(12):1300-1304
The Mofeng Ointment Formulation (MOF, 摩风膏方) is recorded in the Dunhuang manuscript Unnamed Treatise on the Pulse (《亡名氏脉经》) and stands as a representative ancient external therapeutic formula in traditional Chinese medicine (TCM). Known for dispelling wind, activating blood circulation, warming the meridians, and relieving pain, it is particularly effective in treating rheumatic arthralgia. Through literature research, this paper systematically reviews the composition, preparation techniques, and clinical application characteristics of MOF. In recent years, advancements in modern pharmaceutical technology have led to the development of various innovative ointment-based formulations derived from the traditional recipe, such as Dunhuang Xiaoding Ointment (敦煌消定膏), Dunhuang Xiaozhong and Zhentong Ointment (Patch) (敦煌消肿镇痛膏/贴), Xiaoding Ointment (消定膏) gel patch, and Xiaoding Ointment (消定膏) cataplasm. These innovations explore pathways for transforming classical prescriptions into modern applications, providing a theoretical basis for the external TCM treatment of pain-related and orthopedic conditions.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Mechanism of Buzhong Yiqitang in Repairing Brain Developmental Abnormalities in Offspring of Pregnant Rats with Subclinical Hypothyroidism
Yan MA ; Xiaojiao LYU ; Yangling HUANG ; Xiande MA ; Tianshu GAO ; Peiwei CONG ; Wei CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):24-34
ObjectiveTo evaluate the pharmacological effect of Buzhong Yiqitang on brain development in offspring of rats with subclinical hypothyroidism (SCH) during pregnancy and explore its potential mechanism. MethodsForty-eight SPF female SD rats were divided into sham operation group (n=8) and model group (n=40). The rat model of subclinical hypothyroidism (SCH) was constructed by total thyroidectomy combined with postoperative subcutaneous injection of levothyroxine (L-T4). The modeled rats were randomly allocated into model, low-, medium-, and high-dose (5.58, 11.16, 22.32 g∙kg-1, respectively) Buzhong Yiqitang, and euthyrox (4.5×10-6 g∙kg-1) groups, with 8 rats in each group. These rats were co-housed with normal male rats for mating. Drug administration started 2 weeks before pregnancy and continued until delivery. Hematoxylin-eosin staining and Golgi-cox staining were used to observe pathological changes in the hippocampal tissue of offspring rats. Western blot was employed to detect the effects of Buzhong Yiqitang on the protein levels of cytochrome C oxidase subunitⅠ (COX)Ⅰ and COXⅣ in the hippocampal tissue of offspring rats. A colorimetric method was used to measure the mitochondrial adenosine triphosphate (ATP) content in the hippocampal tissue of offspring rats. For in vitro experiments, a hydrogen peroxide (H2O2)-induced oxidative damage model was established with rat pheochromocytoma cells (PC12). Interventions included the DNA methyltransferase inhibitor (SGI-1027), Buzhong Yiqitang-medicated serum, and euthyrox-medicated serum. The cell counting kit-8 (CCK-8) assay was used to examine the effect of Buzhong Yiqitang on cell proliferation. Immunofluorescence staining was performed to evaluate the effect on tubulin beta 3 class Ⅲ (TUBB3) in PC12 cells. Western blot was employed to assess the effects on the protein levels of DNA methyltransferases (TETs and DNMTs) in PC12 cells. The fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), luciferase assay, and JC-1 staining were employed to assess the effects of Buzhong Yiqitang on the levels of reactive oxygen species (ROS) and ATP and the mitochondrial membrane potential in PC12 cells. ResultsCompared with the sham group, the model group showed a reduction in the number of hippocampal neurons, incomplete pyramidal cell bodies, loose arrangement, shortened average dendrite length, decreased dendritic complexity and dendritic spine density, and reduced expression levels of COXⅠ and COXⅣ and content of ATP in the brain tissue (P<0.05, P<0.01). Compared with the model group, after administration of Buzhong Yiqitang and euthyrox, hippocampal neurons exhibited regular arrangement, complete morphology, extended dendrite, increased dendritic complexity and dendritic spine density, and restored expression levels of COXⅠ and COXⅣ and content of ATP (P<0.05, P<0.01), with the medium-dose Buzhong Yiqitang group showing the best therapeutic effect. In the PC12 cell model of oxidative damage, Buzhong Yiqitang increased the cell viability (P<0.01), enhanced neuronal differentiation, down-regulated the expression levels of DNMTs (P<0.05), up-regulated the expression levels of TETs (P<0.05), decreased the ROS content (P<0.01), and restored the ATP content and mitochondrial membrane potential (P<0.01). ConclusionBuzhong Yiqitang protects brain development in offspring of pregnant rats with SCH. It mainly acts on the oxidative stress and mitochondrial dysfunction resulted from abnormal mtDNA methylation, with DNMTs and TETs as the key proteins for its effects.
7.Summary and reflection on the fire moxibustion therapy in the Fragment of Dunhuang Ancient Tibetan Moxibustion Therapy.
Xiaoying MA ; Bo YANG ; Xingke YAN ; Tingting DOU ; Yuting WEI
Chinese Acupuncture & Moxibustion 2025;45(8):1166-1170
The Fragment of Dunhuang Ancient Tibetan Moxibustion Therapy contains rich content on fire moxibustion therapy of Tubo-period Tibetan medicine, characterized by distinctive clinical features of Tibetan acupuncture and strong regional attributes. This paper systematically reviews the relevant materials on moxibustion in the Fragment and summarizes the findings as follows: Tibetan fire moxibustion mainly uses mugwort as the material, and terms like "fine mugwort", "broad bean" and "sheep dung pellet" refer to the size of the moxa cone. The number of moxa cones used is predominantly odd numbers, usually ranging from 5 to 21. The main indications for fire moxibustion cover internal medicine, external medicine, gynecology, pediatrics, and various pain syndromes. The therapy advocates for treating acute conditions and heat syndromes with moxibustion. The manuscript also records detailed contraindications, including time-based and seasonal taboos. Moxibustion is applied to both local and distal acupoints, reflecting the therapeutic concept of treating both proximal and distal regions. Furthermore, it documents simple and practical acupoint localization methods such as surface anatomical markers, proportional bone measurement, finger measurement, and hand-span measurement. Compared with contemporaneous Chinese medical moxibustion techniques, the moxibustion methods recorded in this Fragment are rich in content and present unique Tibetan theoretical characteristics. It provides valuable data and evidence for the excavation, application, and further research of Tibetan acupuncture and moxibustion.
Moxibustion/instrumentation*
;
Humans
;
History, Ancient
;
Medicine, Tibetan Traditional/history*
;
Tibet
;
Acupuncture Points
8.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
9.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
10.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*

Result Analysis
Print
Save
E-mail