1.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
8.Regulation of autophagy on diabetic cataract under the interaction of glycation and oxidative stress
Rong WANG ; Pengfei LI ; Jiawei LIU ; Yuxin DAI ; Mengying ZHOU ; Xiaoxi QIAN ; Wei CHEN ; Min JI
International Eye Science 2025;25(12):1932-1937
Diabetic cataract, a prevalent ocular complication of diabetes mellitus, arises from a complex interplay of pathological mechanisms, with oxidative stress and glycation stress playing central roles. Autophagy, a critical cellular self-protection mechanism, sustains intracellular homeostasis by selectively degrading damaged organelles and misfolded proteins, thereby counteracting the detrimental effects of oxidative and glycation stress under hyperglycemic conditions. Emerging evidence indicates a synergistic interaction between glycation stress and oxidative stress, which may exacerbate autophagic dysfunction and accelerate the onset and progression of diabetic cataract. However, the precise molecular mechanisms underlying this relationship remain incompletely understood. This review systematically examines the regulatory role of autophagy inthe pathogenesis of diabetic cataract, with a particular focus on how autophagic impairment influences disease progression under the combined effects of glycation and oxidative stress. By elucidating these mechanisms, the paper aims to provide novel insights into molecular diagnostic approaches and targeted therapeutic strategies for diabetic cataract.
9.Novel autosomal dominant syndromic hearing loss caused by COL4A2 -related basement membrane dysfunction of cochlear capillaries and microcirculation disturbance.
Jinyuan YANG ; Ying MA ; Xue GAO ; Shiwei QIU ; Xiaoge LI ; Weihao ZHAO ; Yijin CHEN ; Guojie DONG ; Rongfeng LIN ; Gege WEI ; Huiyi NIE ; Haifeng FENG ; Xiaoning GU ; Bo GAO ; Pu DAI ; Yongyi YUAN
Chinese Medical Journal 2025;138(15):1888-1890
10.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation

Result Analysis
Print
Save
E-mail