1.Inhibitory effect of hydroxysafflor yellow A against PMN activation induced by LPS.
Wei WU ; Ming JIN ; Jing TONG ; Xiaofei WANG ; Baoxia ZANG
Acta Pharmaceutica Sinica 2011;46(2):153-7
Carthamus tinctorius L. is a traditional Chinese medicine with the effect of promoting blood circulation and removing blood stasis. HSYA (hydroxysafflor yellow A) is the main effective component of Carthamus tinctorius L. In order to study the inhibitory effects of HSYA against PMN (polymorphonuclear) activation induced by LPS (lipopolysaccharide), rabbit PMN adhesion potency which was activated by LPS through colorimetry method was observed. Cellular free calcium concentration was determined by fluorescence spectrophotometry. RT-PCR was applied to study the effect of HSYA on PMN TNF-alpha and IL-6 mRNA expression; The inhibition of HSYA on NF-kappaB activation was monitored with immunofluorescence. The results showed that after treated with HSYA, the increase of adhesion potency (HSYA dose 1.01 x 10(-4) mol x L(-1)), free calcium concentration (HSYA dose 3.1 x 10(-5) mol x L(-1)), TNF-alpha and IL-6 mRNA expression elevation (HSYA dose 5.2 x 10(-1) mol x L(-1)) induced by LPS were inhibited. HSYA can inhibit NF-kappaB p65 subgroup nuclear translocation (HSYA dose 5.2 x 10(-5) mol x L(-1)). It is suggested that HSYA is effective in PMN activation induced by LPS.
2.Protective effect of hydroxysafflor yellow A against acute lung injury induced by oleic acid and lipopolysaccharide in rats
Xiaofei WANG ; Ming JIN ; Jing TONG ; Wei WU ; Jinrong LI ; Baoxia ZANG
Acta Pharmaceutica Sinica 2010;45(7):940-4
This study is to investigate the pharmacological effect and mechanism of action of hydroxysafflor yellow A (HSYA) on acute lung injury (ALI). The rat ALI was induced by oleic acid and lipopolysaccharide (LPS) injection. The incidence of acidosis, PaO2 (arterial blood oxygen pressure), W/D (wet weight/dry weight) and lung index (LI) were measured. Electron microscope and optical microscope were applied to observe lung morphological changes in rat. RT-PCR was used to determine TNF-alpha and ICAM-1 mRNA level. Inhibition effect of HSYA on plasma inflammatory cytokine expression was measured by ELISA. HSYA could alleviate pulmonary edema, reduce acidosis, keep PaO2 from descending, inhibit inflammatory cell infiltration, inhibit rat lung TNF-alpha and ICAM-1 mRNA expression and plasma IL-6 and IL-1beta level elevation. HSYA is an effective ingredient to remit ALI induced by oleic acid and LPS in rat.
3.An electrophysiological study on the anti-ventricular arrhythmic effect of adenosine in the guinea pig.
Zheng-Hang ZHAO ; Wei-Jin ZANG ; Xiao-Jiang YU ; Yi-Min ZANG
Acta Physiologica Sinica 2003;55(1):36-41
Using whole-cell patch clamp technique this study investigated the effects of adenosine (Ado) on action potential, L-type calcium current (I(Ca.L)), delayed afterdepolarizations (DADs), and transient inward current (I(ti)) induced by isoproterenol (Iso) in guinea pig isolated single ventricular myocytes. The results showed: (1) Ado alone had no significant direct effects on action potential and I(Ca.L) in guinea pig ventricular myocytes at 20-100 micromol/L. However, Ado significantly attenuated the prolongation of action potential duration (APD) and the increase of the peak amplitude of I(Ca.L) induced by Iso. Iso (10 nmol/L) markedly increased APD(50) and APD(90) from 340+/-21 ms to 486+/-28 ms and from 361+/-17 ms to 501+/-29 ms, respectively (P<0.01), and increased the amplitude of I(Ca.L) from 6.53+/-1.4 pA/pF to 18.28+/-2.4 pA/pF (P<0.01). The peak potential of current-potential relationship shifted to the left. Ado (50 micromol/L) abbreviated APD(50), APD(90) to 403+/-19 ms and 419+/-26 ms (P<0.01), and decreased the peak amplitude of I(Ca.L) to 10.2+/-1.5 pA/pF (P<0.01 vs Iso), but did not change resting membrane potential (RMP), action potential amplitude (APA), and overshoot (OS). (2) Iso (30 nmol/L) reproducibly elicited DADs with 100% incidence of DADs under this condition. Ado (50 micromol/L) completely inhibited Iso from inducing DADs. Iso (30 nmol/L) elicited I(ti) with 2-second depolarizing voltage-clamp pulses rising to +20 mV from a holding potential of -40 mV, the incidence of I(ti) being 100%, and the I(ti) was suppressed in the presence of Ado (50 micromol/L) with the incidence of I(ti) decreased to 14.3% (P<0.05). These data indicate that Ado antagonizes the stimulatory effect of Iso, and that the antiarrhythmic mechanism of Ado preventing Iso-induced DADs is due to the inhibition of intracellular Ca(2+) overload through attenuating the prolongation of APD, the enhance of I(Ca.L) and I(ti).
Action Potentials
;
drug effects
;
Adenosine
;
pharmacology
;
Animals
;
Anti-Arrhythmia Agents
;
pharmacology
;
Arrhythmias, Cardiac
;
physiopathology
;
Calcium Channels, L-Type
;
drug effects
;
Female
;
Guinea Pigs
;
Heart Ventricles
;
cytology
;
Isoproterenol
;
antagonists & inhibitors
;
Male
;
Myocytes, Cardiac
;
physiology
;
Patch-Clamp Techniques
4.Different effects of acetylcholine on the action potential and force contraction in guinea pig atrial and ventricular myocardium.
Ping FANG ; Wei-Jin ZANG ; Xiao-Jiang YU ; Qiang SUN ; Yi-Min ZANG ; Jun LU
Acta Physiologica Sinica 2002;54(4):311-316
The purpose of this study was to investigate the different effects of ACh on the action potential and force contraction in guinea pig atrial and ventricular myocardium by using standard microelectrodes and force transducer. The results showed that the duration of the action potential (APD) of atrial myocardium was shortened from 208.57+/-36.05 to 101.78+/-14.41 ms (n=6, P<0.01), and the APD of the ventricular myocardium was shortened from 286.73+/-36.11 to 265.16+/-30.06 ms (n=6, P<0.01).The amplitude of the action potential (APA) of the atrial myocardium was decreased from 88.00+/-9.35 to 62.62+/-20.50 mV (n=6, P<0.01), while the APA of the ventricular myocardium did not change significantly.The force contraction of atrial myocardium was inhibited completely (n=6, P<0.01), while the force contraction of ventricular myocardium was inhibited by 37.57+/-2.58% (n=6, P<0.01). The ACh effects correlated with its concentration. The K(D) of the APD shortening effects in the atrial and ventricular myocardium were 0.275 and 0.575 micromol/L. The K(D) of the negative inotropic in the atrial and ventricular myocardium were 0.135 and 0.676 micromol/L, respectively. The corresponding data points were compared using t test between the atrial and ventricular myocardium, and the differences were significant when the ACh concentration was above 10 nmol/L. Furthermore, atropine (10 micromol/L) and CsCl (20 mmol/L) blocked the effects of 10 micromol/L ACh on the APD of ventricular myocardium, while CdCl2 (0.1 mmol/L) had no influence on these effects. In conclusion, ACh could shorten the action potential duration and inhibit the force contraction of atrial and ventricular myocardium in a concentration-dependent manner. There are differences in the effects of ACh on the atrial and ventricular myocardium. The atrial myocardium is more sensitive to ACh than the ventricular myocardium. It is probable that the muscarinic receptor and the potassium channel, but not the calcium channel, are involved in the ACh-induced shortening of the ventricular APD.
Acetylcholine
;
pharmacology
;
Action Potentials
;
drug effects
;
Animals
;
Calcium Channels
;
metabolism
;
Guinea Pigs
;
Heart Atria
;
drug effects
;
Heart Ventricles
;
drug effects
;
Microelectrodes
;
Potassium Channels
;
metabolism
;
Receptors, Muscarinic
;
metabolism
5.Effect of isopropyl 3-(3,4-dihydroxyphenyl) -2-hydroxypropanoate on rat pulmonary artery smooth muscle.
Jing LI ; Xin MA ; Wei-Jin ZANG
China Journal of Chinese Materia Medica 2008;33(24):2942-2945
OBJECTIVETo investigate the effect of isopropyl 3-(3,4-dihydroxyphenyl)-2- hydroxypropanoate on vascular smooth muscle.
METHODIsolated rat pulmonary artery was perfused and the tension of the vessel was measured, the effect of isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate on the pulmonary artery precontracted by noradrenaline (NE) and concentration-response curves of 5-hydroxytryptamine (5-HT), endothelin-1 (ET-1), U46619 and KCl was also observed.
RESULTIsopropyl 3-(3,4-dihydroxyphenyl) -2-hydroxypropanoate exerted relaxation effect on the endothelium-intact artery precontracted by NE in a concentration-dependent manner, which was inhibited with denuded endothelium. The right-shift of the concentration-response curves of 5-HT, ET-1, U46619 and KCl.
CONCLUSIONIsopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate have relaxation action on rat pulmonary artery in the way of endothelium-dependance, the mechanism of relaxation action by isopropyl 3-(3,4-dihydroxyphenyl) -2-hydroxypropanoate may be related to calcium channels.
Animals ; Female ; In Vitro Techniques ; Male ; Muscle Contraction ; drug effects ; Muscle, Smooth, Vascular ; drug effects ; physiology ; Propionates ; pharmacology ; Pulmonary Artery ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley
6.Effect of extracellular chloride concentration on deactivation kinetics of rat ClC-1 chloride channel.
Xiao-Dong ZHANG ; Yi-Min ZANG ; Shi-Sheng ZHOU ; Wei-Jin ZANG ; Xiao-Jiang YU ; Yue-Min WANG
Acta Physiologica Sinica 2002;54(3):196-200
The gating mechanism of ClC-1 chloride channel was studied in this paper by heteroexpression of rat wild type ClC-1 gene in Xenopus oocytes and by two-electrode voltage clamping technique. The deactivation gating kinetic parameters were obtained by applying two exponential fitting of the deactivating currents at various extracellular chloride concentrations. It was found that decrease in extracellular chloride concentration increased the fractional amplitude of fast deactivating component, and depressed the fractional amplitude of slow deactivating component accompanied by a decrease in fast and slow deactivating time constants. These results demonstrate that the deactivation kinetic parameters of ClC-1 are largely dependent on the extracellular chloride concentration, which induces changes in channel gating.
Animals
;
Chloride Channels
;
drug effects
;
physiology
;
Chlorides
;
pharmacology
;
Electrophysiology
;
Female
;
In Vitro Techniques
;
Ion Channel Gating
;
drug effects
;
physiology
;
Oocytes
;
physiology
;
Rats
;
Xenopus
7.An analysis of four cases of misdiagnosed primary lymphocytic hypophysitis
Qian WEI ; Li ZANG ; Yijun LI ; Weijun GU ; Nan JIN ; Qinghua GUO ; Jin DU ; Jianming BA ; Zhaohui LYU ; Juming LU ; Jingtao DOU ; Yiming MU ; Guoqing YANG
Chinese Journal of Internal Medicine 2017;56(7):512-515
To improve the differential diagnosis of sellar region mass,4 cases with sellar mass and misdiagnosed as lymphocytic hypophysitis (LYH) were reviewed retrospectively.The 4 patients (2 male and 2 female) aged 20-60 years old were all presented with symptoms of headache,polydipsia and polyuria.Biochemical studies confirmed the diagnoses of central diabetes insipidus and hypopituitarism.Head MRI scans showed LYH like image for all the cases,and,thus,high dose methylprednisolone pulse therapy (HDMPT) was applied to the patients.Their symptoms deteriorated and the sellar mass enlarged after a short period of partial improvement.Operations were performed in all the patients.Histology study showed craniopharyngioma with abscess,primary abscess,secondary hypophysitis caused by Wegener's granulomatosis,and germinoma with secondary hypophysitis,respectively.In conclusion,surgery or biopsy is necessary for those who presented with sellar region mass and was suspected to be with LYH,but with poor response or even worse after HDMPT.
8.Cardioprotection of ischemic postconditioning and pharmacological post-treatment with adenosine or acetylcholine.
Wei-Jin ZANG ; Lei SUN ; Xiao-Jiang YU
Acta Physiologica Sinica 2007;59(5):593-600
The recent discovery of ischemic postconditioning is a landmark of anti-reperfusion injury. The medical community has a preference for postconditioning because it is easier to control in clinic and has reliable benefits to heart compared with preconditioning. Postconditioning is defined as a series of brief mechanical interruptions of blood flow applied at the very onset of reperfusion. It can reduce irreversible post-ischemic injury and protect myocardium. There are two important factors in the algorithm of postconditioning: cycle number and duration of intermittent episodes. The latter may depend on species and is more important than cycle number. Postconditioning-induced infarct-sparing effect persists not only after the acute phase of reperfusion but also after a prolonged reperfusion. However, whether cardioprotection of postconditioning is related to preservation of endothelial function and attenuation of oxidative damage is still under debate. Up-regulating the reperfusion injury salvage kinase (RISK) pathway is one of the most important mechanisms in cardioprotection of postconditioning, including activation of phosphatidylinositol 3-kinase (PI3K)-Akt and/or extracellular signal-regulated kinase (ERK), which reduces apoptosis and necrosis by inhibiting the opening of mitochondrial permeability transition pore (mPTP). But the signal transduction of these two pathways needs further research. In order to be more suitable for clinical application, researchers translate mechanical maneuver into drug intervention to investigate whether drug can simulate ischemic postconditioning in cardioprotection, termed pharmacological postconditioning. Adenosine is one of the most extensive and prospective drugs in pharmacological postconditioning study. However, in our laboratory we demonstrate that acetylcholine is able to induce pharmacological postconditoning through mitochondrial ATP-sensitive potassium channel. The present article reviews the protective effects and signal transduction of postconditioning, especially the mechanisms and clinical application of adenosine- and acetylcholine-induced pharmacological postconditioning.
Acetylcholine
;
Adenosine
;
Extracellular Signal-Regulated MAP Kinases
;
Heart
;
Humans
;
Ischemic Postconditioning
;
KATP Channels
;
Mitochondrial Membrane Transport Proteins
;
Myocardial Reperfusion Injury
;
Myocardium
;
Phosphatidylinositol 3-Kinases
;
Potassium Channels
;
Prospective Studies
;
Proto-Oncogene Proteins c-akt
;
Reperfusion Injury
;
Signal Transduction
9.Effect of carnosol against proliferative activity of breast cancer cells and its estrogen receptor subtype's mediation and regulation mechanisms.
Pi-Wen ZHAO ; David Yue-Wei LEE ; Zhong-Ze MA ; Yan-Ling SUN ; Shi-Ying TAO ; Jin-Feng ZANG ; Jian-Zhao NIU
China Journal of Chinese Materia Medica 2014;39(17):3344-3348
Carnosol has been proved to have anti-breast cancer effect in previous research. But its ER subtype's specific regulation and mediation mechanisms remain unclear. The aim of this study is to observe the effect of carnosol on cell proliferation and its estrogen receptor α and β's specific regulation and mediation mechanisms with ER positive breast cancer T47D cell. With estrogen receptor α and β antagonists MPP and PHTPP as tools, the MTT cell proliferation assay was performed to observe the effect of carnosol on T47D cell proliferation. The changes in the T47D cell proliferation cycle were detected by flow cytometry. The effect of carnosol on ERα and ERβ expressions of T47D cells was measured by Western blot. The findings showed that 1 x 10(-5)-1 x 10(-7) mol x L(-1) carnosol could significantly inhibit the T47D cell proliferation, which could be enhanced by MPP or weakened by PHTPP. Meanwhile, 1 x 10(-5) mol x L(-1) or 1 x 10(-6) mol x L(-1) carnosol could significantly increase ERα and ERβ expressions of T47D cells, and remarkably increase ERα/ERβ ratio. The results showed that carnosol showed the inhibitory effect on the proliferation of ER positive breast cancer cells through target cell ER, especially ERβ pathway. In the meantime, carnosol could regulate expressions and proportions of target cell ER subtype ERα and ERβ.
Blotting, Western
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Diterpenes, Abietane
;
chemistry
;
pharmacology
;
Dose-Response Relationship, Drug
;
Estrogen Receptor Modulators
;
pharmacology
;
Estrogen Receptor alpha
;
antagonists & inhibitors
;
metabolism
;
Estrogen Receptor beta
;
antagonists & inhibitors
;
metabolism
;
Female
;
Flow Cytometry
;
Humans
;
Molecular Structure
;
Pyrazoles
;
pharmacology
;
Pyrimidines
;
pharmacology
10.Monitoring vascular complications following liver transplantation using color Doppler flow imaging.
Xiu-Yun REN ; Wei-Long ZOU ; Yun-Jin ZANG
Chinese Journal of Hepatology 2008;16(12):926-929
OBJECTIVETo assess the value of color Doppler flow imaging (CDFI) in monitoring vascular complications following orthotopic liver transplantation (OLT).
METHODSSeven hundred ninety-two patients who received OLT from April 2002 to December 2006 in the Organ Transplantation Center, General Hospital of Chinese People's Armed Police Forces, Beijing, and underwent CDFI examinations in different periods after OLT were enrolled in this study. Their vascular complications were monitored by CDFI and confirmed by angiography or spiral CT.
RESULTSOf the 792 patients, 54 were diagnosed with vascular complications that occurred 1-360 days after their OLT operations. These complications occurred within 1-30 days, 31-60 days, 61-90 days, 91-180 days, 181-360 days, with the proportions of 46.30%, 22.22%, 14.81%, 9.26% and 7.41% respectively. The proportion of hepatic artery and portal vein complications and outflow occlusions were 61.11%, 35.19% and 3.70% respectively.
CONCLUSIONMost vascular complications occurred within six months after the OLT operation. The continuous and careful monitoring by CDFI is beneficial in an early diagnosis of vascular complications after OLT.
Adolescent ; Adult ; Aged ; Child ; Child, Preschool ; Female ; Follow-Up Studies ; Humans ; Infant ; Liver Transplantation ; adverse effects ; Male ; Middle Aged ; Postoperative Complications ; Ultrasonography, Doppler, Color ; methods ; Vascular Diseases ; diagnostic imaging ; etiology ; Young Adult