1.Establishment of a plant phosphorus utilization and weed control system based on phosphite and its dehydrogenase.
Guizhen YU ; Hang YUAN ; Zhu LUO ; Yanjuan LIU ; Xian LIU ; Yanxiu GAO ; Ming GONG ; Zhurong ZOU
Chinese Journal of Biotechnology 2019;35(2):327-336
Nowadays, available phosphorus (P) deficiency in soil and weed resistance to herbicides have emerged as two severe limiting factors for sustainable agriculture. Therefore, it is of urgent needs to improve plant absorption/utilization ability of the soil P, seek phosphate (Pi)-alternative P fertilizers, and develop new forms of weed control systems. Phosphite (Phi), as a P resource of relatively high amount only less than Pi in Earth, can be converted to utilizable Pi uniquely in some bacterial species by oxidization via its specific dehydrogenase (PTDH), but inhibits plant growth and development. This implies that Phi might rather become a suitable P fertilizer for plants if introducing a PTDH detoxifier from bacteria. Herein, we created the transgenic tobaccos harboring a Pseudomonas PTDH gene (PsPtx) amplified from the soil metagenome previously. RT-PCR showed that the exotic PsPtx gene could express similarly in root, stem and leaf tissues of all transgenic lines. PsPtx transgenic tobaccos could utilize Phi by oxidization as the sole Pi supply, and also outperformed wild-type tobacco with a remarkably dominant growth under Phi stress conditions. Moreover, the PsPtx gene was preliminarily evaluated with a notable quality as a potential candidate of the selection marker in plant genetic transformation. Conclusively, PsPtx and its encoded phosphite dehydrogenase might be applicable for developing a dual system of plant phosphorus utilization and weed control using Phi as P fertilizer and herbicide, and provide an effectual solution to some obstacles in the current crop transgenic studies.
Oxidoreductases
;
Phosphites
;
Phosphorus
;
Plants, Genetically Modified
;
Weed Control
2.Genotoxicity of low-dose Glyphosate by Sister Chromatid Exchange.
Sang Hoon LEE ; Sung Jin KIM ; Woo Ik CHOI ; Sang Chan JIN ; In Jang CHOI ; Jae Ho LEE
Journal of The Korean Society of Clinical Toxicology 2014;12(1):8-13
PURPOSE: Glyphosate (N-phosphonomethyl glycine) is widely used as an herbicide for weed control in rural areas. It is also readily available for suicide attempts. Glyphosate has high toxicity and negatively affects the human body. The aim of this investigation was to study the genotoxicity of a low-concentration of glyphosate through sister chromatid exchange (SCE) in human blood lymphocytes in vitro. METHODS: Primary lymphocyte cultures were obtained from blood samples of 11 males and seven females who had been exposed to glyphosate (0, 100, 200, and 300 ng/mL). The frequency of SCEs was examined and statistical analysis was performed. RESULTS: All doses of glyphosate induced a significant dose-dependent increase in SCE frequency compared with the control group (P<0.001). In particular, the SCE frequency for exposure to low-dose glyphosate was significantly higher in females than in males. CONCLUSION: According to the result of this study, even a low-dose of glyphosate may damage DNA and females are more vulnerable to glyphosate.
DNA
;
Female
;
Human Body
;
Humans
;
Lymphocytes
;
Male
;
Sister Chromatid Exchange*
;
Suicide
;
Toxicology
;
Weed Control
3.Genotoxicity of low-dose Glyphosate by Sister Chromatid Exchange.
Sang Hoon LEE ; Sung Jin KIM ; Woo Ik CHOI ; Sang Chan JIN ; In Jang CHOI ; Jae Ho LEE
Journal of The Korean Society of Clinical Toxicology 2014;12(1):8-13
PURPOSE: Glyphosate (N-phosphonomethyl glycine) is widely used as an herbicide for weed control in rural areas. It is also readily available for suicide attempts. Glyphosate has high toxicity and negatively affects the human body. The aim of this investigation was to study the genotoxicity of a low-concentration of glyphosate through sister chromatid exchange (SCE) in human blood lymphocytes in vitro. METHODS: Primary lymphocyte cultures were obtained from blood samples of 11 males and seven females who had been exposed to glyphosate (0, 100, 200, and 300 ng/mL). The frequency of SCEs was examined and statistical analysis was performed. RESULTS: All doses of glyphosate induced a significant dose-dependent increase in SCE frequency compared with the control group (P<0.001). In particular, the SCE frequency for exposure to low-dose glyphosate was significantly higher in females than in males. CONCLUSION: According to the result of this study, even a low-dose of glyphosate may damage DNA and females are more vulnerable to glyphosate.
DNA
;
Female
;
Human Body
;
Humans
;
Lymphocytes
;
Male
;
Sister Chromatid Exchange*
;
Suicide
;
Toxicology
;
Weed Control