1.Phytoremediation of heavy metal polluted soils and water: progresses and perspectives.
Mohammad Iqbal LONE ; Zhen-li HE ; Peter J STOFFELLA ; Xiao-e YANG
Journal of Zhejiang University. Science. B 2008;9(3):210-220
Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.
Biodegradation, Environmental
;
Metals, Heavy
;
metabolism
;
Soil Pollutants
;
metabolism
;
Water Pollutants, Chemical
;
metabolism
2.Biodegradation of complex bacteria on phenolic derivatives in river water.
Guang-Hua LU ; Chao WANG ; Zhe SUN
Biomedical and Environmental Sciences 2009;22(2):112-117
OBJECTIVETo isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal micrpbes and co-metabolic degradation of mixed chlorophenols in river water.
METHODSMicrobial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water.
RESULTSThe complex bacteria were identified as Mycopiana, Alcaligenes, Pseudomonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied.
CONCLUSIONThe complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.
Bacteria ; metabolism ; Biodegradation, Environmental ; Phenols ; metabolism ; Rivers ; microbiology ; Water ; chemistry ; Water Pollutants, Chemical ; chemistry ; metabolism ; Water Purification
3.Developmental effects of TCIPP and TnBP on zebrafish (Danio rerio) embryos.
Shu Yi ZHANG ; Shao Ping ZHANG ; Zi Jin SHAO ; Yuan Zheng FU ; Wen GU ; Hong ZHI ; Jian KONG ; Fu Chang DENG ; Wen Yan YAN ; Juan LIU ; Chao WANG ; Song TANG
Chinese Journal of Preventive Medicine 2023;57(5):693-700
Objective: To investigate the toxicity of tris (2-chloropropyl) phosphate (TCIPP) and tributyl phosphate (TnBP) on the growth and development of zebrafish embryos, as well as to explore the underlying mechanisms at the transcriptional level. Methods: With zebrafish as a model, two hpf zebrafish embryos were exposed to TCIPP and TnBP (0.1, 1, 10, 100, 500, and 1 000 μmol/L) using the semi-static method, and their rates of lethality and hatchability were determined. The transcriptome changes of 120 hpf juvenile zebrafish exposed to environmentally relevant concentrations of 0.1 and 1 μmol/L were measured. Results: The 50% lethal concentrations (LC50) of TCIPP and TnBP for zebrafish embryos were 155.30 and 27.62 μmol/L (96 hpf), 156.5 and 26.05 μmol/L (120 hpf), respectively. The 72 hpf hatching rates of TCIPP (100 μmol/L) and TnBP (10 μmol/L) were (23.33±7.72)% and (91.67±2.97)%, which were significantly decreased compared with the control group (P<0.05). Transcriptome analysis showed that TnBP had more differential genes (DEGs) than TCIPP, with a dose-response relationship. These DEGs were enriched in 32 pathways in total, including those involved in oxidative stress, energy metabolism, lipid metabolism, and nuclear receptor-related pathways, using the IPA pathway analysis. Among them, three enriched pathways overlapped between TCIPP and TnBP, including TR/RXR activation and CAR/RXR activation. Additionally, DEGs were also mapped onto pathways of LXR/RXR activation and oxidative stress for TnBP exposure only. Conclusion: Both TCIPP and TnBP have growth and developmental toxicities in zebrafish embryos, with distinct biomolecular mechanisms, and TnBP has a stronger effect than TCIPP.
Animals
;
Zebrafish/metabolism*
;
Embryo, Nonmammalian/metabolism*
;
Transcriptome
;
Oxidative Stress
;
Water Pollutants, Chemical/metabolism*
4.Fate and Transport of Mercury in Environmental Media and Human Exposure.
Moon Kyung KIM ; Kyung Duk ZOH
Journal of Preventive Medicine and Public Health 2012;45(6):335-343
Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.
Air Pollutants/chemistry/metabolism
;
*Environmental Exposure
;
Environmental Remediation
;
Food Chain
;
Humans
;
Mercury/chemistry/*metabolism
;
Methylmercury Compounds/chemistry/metabolism
;
Photolysis
;
Sulfur-Reducing Bacteria/metabolism
;
Water Pollutants, Chemical/metabolism
5.Bacterial reduction of toxic Cr (VI) into Cr (III).
Muhammad FAISAL ; Shahida HASNAIN
Chinese Journal of Biotechnology 2004;20(5):774-778
Two chromium-resistant bacterial strains CrT-1 and CrT-13, which can tolerate K2CrO4 up to 40 mg x mL(-1) on nutrient agar, 25 mg x mL(-1) K2 CrO4 in nutrient broth, and up to 10 mg x mL(-1) in acetate-minimal media, were used in this study. On the basis of 16S rRNA, strain CrT-1 was identified as Ochrobactrum intermedium and CrT-13 as Brevibacterium sp.. Uptake of chromate was greater in living cells than in heat-killed cells. Ochrobactrum intermedium CrT-1 reduced 73% and 41% of Cr(V) while Brevibacterium CrT-13 reduced 62% and 48% Cr(VI) at an initial chromate concentration of 750, and 1500 microg x mL(-1), after 96 hours with an inoculum size of 9.6 x 10(7) cells mL(-1). Different heavy metals at low concentrations did not affect the reduction potential of the strains significantly. Ochrobactrum intermedium CrT-1 reduced 84% and 65% while Brevibacterium CrT-13 reduced 60% and 44% of Cr(VI) at an initial Cr(VI) concentration of 250 and 500 microg x mL(-1), respectively, in an industrial effluent sample.
Bacteria
;
metabolism
;
Biodegradation, Environmental
;
Chromium
;
metabolism
;
Industrial Waste
;
Metals, Heavy
;
pharmacology
;
Oxidation-Reduction
;
Water Pollutants, Chemical
;
metabolism
6.Correlation study of toxicity of substituted phenols to river bacteria and their biodegradability in river water.
Xing YUAN ; Guang-Hua LU ; Li-Min SU
Biomedical and Environmental Sciences 2005;18(5):281-285
OBJECTIVETo study the correlation of toxicity with biodegradability (BODT) in order to promote QSBR development and understand the degradation mechanism.
METHODSToxicity of substituted phenols to river bacteria was determined by the turbidities that were measured using a spectrophotometer (UV-190) at 530 nm against a blank control. The biodegradability of substituted phenols was expressed as BODT and the DO concentrations were determined by the iodometric titration method.
RESULTSThe BODT and toxicity(log 1/IC50) of 12 substituted phenols to bacteria from the Songhua River were determined respectively. The correlation of biodegradability with toxicity was developed: BODT=8.21 (+/-2.22) pKa -32.44 (+/-8.28) log 1/IC50 +89.04 (+/-38.20), n=12, R2=0.791, R2(adj)=0.745, SE=9.134, F=17.066, P=0.001.
CONCLUSIONThe BODT of substituted phenols was influenced by their toxicity and the ionization constant pKa. The stronger the toxicity, the less readily the compound was degraded by river bacteria.
Bacteria ; metabolism ; Biodegradation, Environmental ; Data Interpretation, Statistical ; Models, Biological ; Phenols ; chemistry ; metabolism ; toxicity ; Rivers ; microbiology ; Water Pollutants, Chemical ; metabolism ; toxicity
7.Effects of pre-treatment on Cu2+ absorption of Penicillium janthinellum strain GXCR.
Xiaoting HUANG ; Changbin SUN ; Xiaoling CHEN ; Huijuan QIN ; Mei HU ; Yuan YUAN ; Youzhi LI
Chinese Journal of Biotechnology 2009;25(1):76-83
In order to effectively increase capacity of Cu2+ absorption by Penicillium from Cu2+-containing aqueous solution and to study the mechanisms of absorption, effects of eight pre-treatment methods on Cu2+ absorption of Penicillium janthinellum strain GXCR were compared. The results showed that the efficiency of Cu2+ absorption obviously increased through pre-treatment by homogenization, homogenization-basification (NaOH), oven dry (80 degrees C), homogenization-salinification (NaCl), homogenization-detergent and homogenization-polarization (C2H6SO), but significantly decreased after acidification pretreatment with H2SO4. In comparison with the previous reports, the pretreatment in a homogenization-NaOH way could more efficiently enhance the Cu2+ absorption capacity of this fungus. Homogenization-basification (0.5 mol/L NaOH) increased Cu2+ biosorption by 47.95%. The Cu2+ absorption of the mycelia treated by homogenization-basification followed Langmuir isotherm equation, suggesting a surface absorption process. After four cycles of absorption-desorption, mycelia pretreated by homogenization-alkalization still had 70.82% of Cu2+ biosorption efficiency. Infrared reflectance analysis indicated that alkalization treatment made marked effects on molecular groups of C-H, C=O, and C=O in COOH on the mycelial surfaces, and -OH was a key Cu2+-binding group. It is therefore suggested that the Cu2+ absorption by the GXCR is likely to be a chemical absorption process through Cu2+ binding with -OH group on the mycelia.
Adsorption
;
Biodegradation, Environmental
;
Copper
;
metabolism
;
Penicillium
;
metabolism
;
Physical Phenomena
;
Sodium Hydroxide
;
chemistry
;
Waste Disposal, Fluid
;
methods
;
Water Pollutants, Chemical
;
metabolism
8.Mechanism of Cr(VI) biosorption by flocculating yeast.
Lijie CHEN ; Zhicun WANG ; Xumeng GE ; Fengwu BAI
Chinese Journal of Biotechnology 2011;27(1):52-59
The flocculating yeast strain SPSC01 is a fusant strain of Saccharomyces cerevisiae and Schizosaccharomyces pombe. The use of SPSC01 to absorb Cr(VI) from Cr(VI) containing aqueous solution would greatly reduce the cost of post-adsorption separation, since the superior flocculating property of SPSC01 would allow easy separation of the Cr(VI)-biomass from the solution. In order to investigate the effects of flocculating proteins on Cr(VI) reduction and absorption by SPSC01, the absorption behaviors of SPSC01 and its parental strains were compared. The results showed that Cr(VI) removal rate of SPSC01 was almost the same as that of S. pombe, which also has flocculating ability, but was faster than that of S. cerevisiae, which has no flocculating ability. When the system reached equilibrium, the amount of total Cr adsorbed by S. pombe, SPSC01 and S. cerevisiae were 68.8%, 48.6% and 37.5%, respectively. This showed that flocculation was beneficial to Cr(VI) reduction and adsorption, and suggested that focculating proteins may play a role in enhancing the Cr(VI) adsorption capacity of SPSC01 and S. pombe. We investigated the mechanism of Cr(VI) adsorption by SPSC01 using chemical modification and FTIR. The results indicated that the major functional groups (amino, carboxyl and amide) of surface proteins may contribute to the absorption of Cr(VI).
Adsorption
;
Biodegradation, Environmental
;
Chromium
;
isolation & purification
;
Flocculation
;
Saccharomyces cerevisiae
;
metabolism
;
Schizosaccharomyces
;
metabolism
;
Surface Properties
;
Water Pollutants, Chemical
;
isolation & purification
9.Gas-liquid mass transfer in three-phase inverse turbulent bed reactor.
Ren-Cun JIN ; Ping ZHENG ; Jian-Wei CHEN ; Zhan TU
Chinese Journal of Biotechnology 2007;23(1):122-126
The characteristics of gas-liquid mass transfer of three-phase system comprising air, tap water/wastewater, and hollow glass beads were studied in a laboratory-scale inverse turbulent bed reactor. The influence of operational factors and liquid property on volumetric liquid-phase mass transfer coefficient kLa was investigated under the conditions of superficial gas velocity (0.53mm xs(-1) - 10mx s(-1) solid hold-up (0 - 0.3), and superficial liquid velocity (0 - 0.2mm x s(-1)). The results showed that the coefficient value was 0.0456 - 1. 414min -, which increased with superficial gas velocity and liquid velocity. The coefficient attained the maximum value at solid hold-up of 0.05 - 0.08. Compared with the coefficient value in tap water, that in synthetic wastewater and industrial wastewater is decreased by 39.0% and 50.9%, respectively. These data have provided a basis for the process analysis and mathematical simulation of inverse turbulent bed reactor.
Algorithms
;
Biodegradation, Environmental
;
Bioreactors
;
Computer Simulation
;
Gases
;
chemistry
;
metabolism
;
Kinetics
;
Models, Chemical
;
Reproducibility of Results
;
Temperature
;
Waste Disposal, Fluid
;
instrumentation
;
methods
;
Water
;
chemistry
;
metabolism
;
Water Microbiology
;
Water Pollutants, Chemical
;
chemistry
;
metabolism
;
Water Purification
;
instrumentation
;
methods
10.In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system.
Hui-qing CHANG ; Xiao-e YANG ; Yun-ying FANG ; Pei-min PU ; Zheng-kui LI ; Zed RENGEL
Journal of Zhejiang University. Science. B 2006;7(7):521-531
OBJECTIVEThis study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal.
METHODSThe aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons.
RESULTSEichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment) and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system, the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, COD(Mn), and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 3 orders of magnitude, as compared to the un-inoculated treatments. Similar to the first experiment, higher water transparency and lower values of chlorophyll a, COD(Mn) and pH were observed in the plant+ INCB integrated system, as compared to other treatments. These results indicated that plant-microbe interaction showed beneficial effects on N removal from the eutrophic waterbody.
Biodegradation, Environmental ; Eutrophication ; physiology ; Magnoliopsida ; metabolism ; Nitrogen ; isolation & purification ; pharmacokinetics ; Systems Integration ; Water Microbiology ; Water Pollutants, Chemical ; isolation & purification ; pharmacokinetics ; Water Purification ; methods