1.Natural water purification and water management by artificial groundwater recharge.
Journal of Zhejiang University. Science. B 2008;9(3):221-226
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.
Filtration
;
Fresh Water
;
analysis
;
Water Purification
;
instrumentation
;
methods
;
Water Supply
2.Problems of drinking water treatment along Ismailia Canal Province, Egypt.
Mohamed H GERIESH ; Klaus-Dieter BALKE ; Ahmed E EL-RAYES
Journal of Zhejiang University. Science. B 2008;9(3):232-242
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.
Egypt
;
Industry
;
Seasons
;
Water Microbiology
;
Water Movements
;
Water Pollutants
;
Water Purification
;
methods
;
Water Supply
;
analysis
3.A Simulation of the Oxygen Profile in the Han River.
Yonsei Medical Journal 1975;16(1):29-39
The stochastic profile of variability of biochemical oxygen demand (BOD) and dissolved oxygen (D0) in the Han River has been considered with Streeter-Phelp's equation. According to the nature of the Han River, the BOD removal coefficient, K1, and the reaeration coefficient, K2 values, were calculated at an average of 0.157 and 0.97 respectively at 20 degrees C in the spring. Where the levels of BOD would be high in relation to the standard of water quality, the treatment for sewage and industrial wastes from tributaries of Seoul City should be performed with proper efficiency. Before 1985 plants with 90% efficiency should be installed at every outlet of the tributaries. The level of DO is not a relevant parameter to assess the pollution in the Han River. The description of the oxygen profile of the Han River also suggests monitoring points for inspection of water quality.
Fresh Water/analysis*
;
Korea
;
Models, Chemical
;
Oxygen/analysis*
;
Water/analysis*
;
Water Pollution, Chemical/analysis
4.Research on the formulation and revision of radiological parameters in the "Standards for Drinking Water Quality(GB5749-2022)" in China.
Yan Qin JI ; Lan ZHANG ; Quan Fu SUN
Chinese Journal of Preventive Medicine 2023;57(6):826-830
The radioactive safety of drinking water has attracted increasing public concern. The newly issued Standards for Drinking Water Quality (GB5749-2022) in China has revised the radiological parameters. This article provides an overview of the main sources, levels of radionuclides in drinking water, and summarized the individual doses criterion and adverse health effects associated with exposure of the public to radionuclides from drinking-water. It analyzes and discusses the relevant revision content of radiological parameters, including the guidance values for screening gross α and gross β, subtracting the contribution of potassium-40 from gross β activity when the gross β activity concentration exceeds the screening level, and the basis for establishing the limit values of reference indices uranium and radium-226. Specific implementation and evaluation suggestions are also proposed.
Humans
;
China
;
Drinking Water
;
Radioisotopes/analysis*
;
Uranium/analysis*
;
Water Supply
5.Research on the establishment of standard limits for perfluorooctanoic acid and perfluorooctane sulfonate in the "Standards for Drinking Water Quality(GB5749-2022)"in China.
Jian Ying HU ; Shi Yi ZHANG ; Min YANG ; Hai Feng ZHANG ; Qi Yue KANG ; Wei AN ; Jia Yi HAN
Chinese Journal of Preventive Medicine 2023;57(6):815-822
Perfluorinated compounds, especially Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are widely detected in water environments in China. Considering the potential health risks of drinking water exposure routes, PFOA and PFOS have been added to the water quality reference index of the newly issued "Standards for Drinking Water Quality (GB5749-2022)", with limit values of 40 and 80 ng/L, respectively. This study analyzed and discussed the relevant technical contents for determining the limits of the hygiene standard, including the environmental existence level and exposure status of PFOA and PFOS, health effects, derivation of safety reference values, and determination of hygiene standard limits. It also proposed prospects for the future direction of formulating drinking water standards.
Humans
;
Water Quality
;
Drinking Water
;
Fluorocarbons/analysis*
;
Caprylates/analysis*
;
China
;
Water Pollutants, Chemical/analysis*
6.Groundwater protection: what can we learn from Germany?
Journal of Zhejiang University. Science. B 2008;9(3):227-231
For drinking water security the German waterworks proceed on a comprehensive concept, i.e., the protection of all the regions from the recharge area to the client. It includes the protection of the recharge area by a precautionary management, a safe water treatment, a strict maintenance of the water distribution network, continuous control and an intensive training of staff. Groundwater protection zones together with effective regulations and control play a very important role. Three protection zones with different restrictions in land-use are distinguished. Water in reservoirs and lakes is also protected by Surface Water Protection Zones. Within the surrounding area the land-use is controlled, too. Special treatment is necessary if acidification happens caused by acid rain, or eutrophication caused by the inflow of sewage. Very important is the collaboration between waterworks and the farmers cultivating land in the recharge area in order to execute water-protecting ecological farming with the aim to reduce the application of fertilizers and plant protection agents. Probable financial losses have to be compensated by the waterworks.
Ecology
;
Germany
;
Water Pollutants
;
isolation & purification
;
Water Pollution
;
prevention & control
;
Water Purification
;
methods
;
Water Supply
;
analysis
7.Revision and prospect of the "Standards for Drinking Water Quality (GB5749-2022)" in China.
Chinese Journal of Preventive Medicine 2023;57(6):801-805
The revision of the national standards for drinking water quality is an important, rigorous and delicate endeavor. The paper introduced the revision of this standard, emphasizing the revision principle, overall technical considerations, and revision contents. Recommendations were also proposed for the implementation of this standard.
Humans
;
Drinking Water
;
Water Quality
;
Reference Standards
;
China
;
Water Pollutants, Chemical/analysis*
;
Water Supply
8.Methodological study on the establishment of limit values in the Standards of Drinking Water Quality.
Lan ZHANG ; Xiao Yuan YAO ; Bi Xiong YE ; Jia Yi HAN ; Sheng Hua GAO
Chinese Journal of Preventive Medicine 2023;57(6):839-843
The establishment of limit values for standards of drinking water quality is an important and complex process. This study systematically introduced the methodology of the establishment of standard limit values for drinking water quality and elaborated on the workflow of setting limit values of water quality indicators, principles and methods of selecting water quality indicators, derivation of safety reference values, and establishment of limit values. It also aimed to provide reference and support for the future revision of relevant standards.
Humans
;
Water Supply
;
Drinking Water
;
Reference Standards
;
Water Quality
;
Water Pollutants, Chemical/analysis*
9.Households with unimproved water sources in Ethiopia: spatial variation and point-of-use treatment based on 2016 Demographic and Health Survey.
Yohannes Tefera DAMTEW ; Abraham GEREMEW
Environmental Health and Preventive Medicine 2020;25(1):81-81
BACKGROUND:
Improved water sources are not equally available in all geographical regions. Populations dependent on unsafe water sources are recommended to treat their water at point-of-use using adequate methods to reduce associated health problems. In Ethiopia, the spatial distribution of households using unimproved water sources have been incomplete or ignored in most of the studies. Moreover, evidence on the point-of-use water treatment practice of households dependent on such water sources is scarce. Therefore, the current study is intended to analyze the spatial distribution of unimproved water sources by wealth quintiles at country level and point-of-use treatment (POU) practices using nationally representative data.
METHOD:
The data of 2016 Ethiopian Demographic and Health Survey (EDHS) conducted on 16650 households from 643 clusters were used for the analysis. For spatial analysis, the raw and spatially smoothed coverage data was joined to the geographic coordinates based on EDHS cluster identification code. Global spatial autocorrelation was performed to analyze whether the pattern of unimproved water coverage is clustered, dispersed, or random across the study areas. Once a positive global autocorrelation was confirmed, a local spatial autocorrelation analysis was applied to detect local clusters. The POU water treatment is analyzed based on reported use of either boiling, chlorine (bleach), filtration, or solar disinfection (SODIS).
RESULTS:
There were 5005 households using unimproved water sources for drinking purposes. Spatial variation of unimproved water coverage was observed with high coverage observed at Amhara, Afar, Southern Nations Nationalities and People and Somalia regions. Disparity in unimproved water coverage between wealth quintiles was also observed. The reported point-of-use water treatment practice among these households is only 6.24%. The odds of POU water treatment among household heads with higher education status is 2.5 times higher (95% CI = 1.43-4.36) compared to those who did not attend education.
CONCLUSION
An apparent clustering trend with high unimproved water coverage was observed between regions and among wealth quintiles hence indicates priority areas for future resource allocation and the need for regional and national policies to address the issue. Promoting households to treat water prior to drinking is essential to reduce health problems.
Drinking Water/analysis*
;
Ethiopia
;
Socioeconomic Factors
;
Spatial Analysis
;
Water Purification/methods*
;
Water Supply/statistics & numerical data*
10.Research on the determination of the limit value of perchlorate in the "Standards for Drinking Water Quality(GB5749-2022)" in China.
Sheng Hua GAO ; Wei AN ; Ming YANG ; Bi Xiong YE ; Lan ZHANG
Chinese Journal of Preventive Medicine 2023;57(6):823-825
Perchlorate is an environmental pollutant that has been a focus of attention in recent years. It has been detected in many environmental water bodies and drinking water in China, with a high level of presence in some areas of the Yangtze River Basin. The human body may ingest perchlorate through exposure pathways such as drinking water and food, and its main health effect is to affect the thyroid's absorption of iodine. The "Standards for Drinking Water Quality" (GB5749-2022) includes perchlorate as an expanded indicator of water quality, with a limit value of 0.07 mg/L. This article analyzes the technical content related to the determination of hygiene standard limits for perchlorate in drinking water, including the environmental presence level and exposure status of perchlorate, main health effects, derivation of safety reference values, and determination of hygiene standard limits.
Humans
;
Water Quality
;
Drinking Water
;
Perchlorates/analysis*
;
China
;
Water Pollutants, Chemical/analysis*