1.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
2.Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.
Xiang HU ; Dominika SOBOTKA ; Krzysztof CZERWIONKA ; Qi ZHOU ; Li XIE ; Jacek MAKINIA
Journal of Zhejiang University. Science. B 2018;19(4):305-316
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).
Biomass
;
Bioreactors
;
Carbon/chemistry*
;
Denitrification
;
Electrons
;
Nitrates
;
Nitrites
;
Oxygen
;
Phosphates
;
Phosphorus/chemistry*
;
Sewage
;
Waste Disposal, Fluid/methods*
;
Wastewater
;
Water Pollutants, Chemical
;
Water Purification/methods*
3.Estimation of the consumption level of four drugs in Beijing using wastewater-based epidemiology.
Jiawulan ZUNONG ; Mu Shui SHU ; Meng Long LI ; Yeerlin ASIHAER ; Meng Ying GUAN ; Yi Fei HU
Chinese Journal of Preventive Medicine 2023;57(5):674-678
Objective: To estimate the consumption level of four drugs in Beijing using wastewater-based epidemiology (WBE). Methods: The primary sludge from one large wastewater treatment plants (WWTPs) was collected in Beijing from July 2020 to February 2021. The concentrations of codeine, methadone, ketamine and morphine in the sludge were detected through solid-phase extraction-liquid chromatography-tandem mass spectrometry. The consumption, prevalence and number of users of four drugs were estimated by using the WBE approach. Results: Among 416 sludge samples, codeine had the highest detection rate (82.93%, n=345) with a concentration [M (Q1, Q3)] of 0.40 (0.22-0.8) ng·g-1, and morphine had the lowest detection rate (28.37%,n=118) with a concentration [M (Q1, Q3)] of 0.13 (0.09, 0.17) ng·g-1. There was no significant difference in the consumption of the four drugs on working days and weekends (all P values>0.05). Drug consumption was significantly higher in winter than that in summer and autumn (all P values <0.05). The consumption [M (Q1, Q3)] of codeine, methadone, ketamine and morphine in winter was 24.9 (15.58, 38.6), 9.39 (4.57, 26.72), 9.84 (5.18, 19.45) and 5.67 (3.57, 13.77) μg·inhabitant-1·day-1, respectively. For these drugs, there was an upward trend in the average drug consumption during summer, autumn and winter (the Z values of the trend test were 3.23, 3.16, 2.19, and 3.32, respectively and all P values<0.05). The prevalence [M (Q1, Q3)] of codeine, methadone, ketamine and morphine were 0.0056% (0.003 4%, 0.009 2%), 0.0148% (0.009 6%, 0.026 7%),0.0333% (0.0210%, 0.0710%) and 0.0072% (0.003 8%, 0.011 7%), respectively. The estimated number of drug users [M (Q1, Q3)] was 918 (549, 1 511), 2 429 (1 578, 4 383), 5 451 (3 444, 11 642) and 1 173 (626, 1 925),respectively. Conclusion: Codeine, methadone, ketamine and morphine have been detected in the sludge of WWTPs in Beijing, and the consumption level of these drugs varies in different seasons.
Humans
;
Beijing
;
Wastewater-Based Epidemiological Monitoring
;
Sewage/analysis*
;
Wastewater
;
Ketamine/analysis*
;
Codeine/analysis*
;
Methadone/analysis*
;
Water Pollutants, Chemical/analysis*
4.Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal.
Chunxia ZHENG ; Cerong WANG ; Manman ZHANG ; Qifeng WU ; Mengping CHEN ; Chenyu DING ; Tengxia HE
Chinese Journal of Biotechnology 2023;39(3):1009-1025
Water eutrophication poses great threats to protection of water environment. Microbial remediation of water eutrophication has shown high efficiency, low consumption and no secondary pollution, thus becoming an important approach for ecological remediation. In recent years, researches on denitrifying phosphate accumulating organisms and their application in wastewater treatment processes have received increasing attention. Different from the traditional nitrogen and phosphorus removal process conducted by denitrifying bacteria and phosphate accumulating organisms, the denitrifying phosphate accumulating organisms can simultaneously remove nitrogen and phosphorus under alternated anaerobic and anoxic/aerobic conditions. It is worth noting that microorganisms capable of simultaneously removing nitrogen and phosphorus absolutely under aerobic conditions have been reported in recent years, but the mechanisms remain unclear. This review summarizes the species and characteristics of denitrifying phosphate accumulating organisms and the microorganisms capable of performing simultaneous nitrification-denitrification and phosphorous removal. Moreover, this review analyzes the relationship between nitrogen removal and phosphorus removal and the underlying mechanisms, discusses the challenges of denitrifying phosphorus removal, and prospects future research directions, with the aim to facilitate process improvement of denitrifying phosphate accumulating organisms.
Phosphorus
;
Phosphates
;
Wastewater
;
Denitrification
;
Waste Disposal, Fluid
;
Nitrogen
;
Bioreactors/microbiology*
;
Nitrification
;
Sewage
5.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage
6.Nanowastes treatment in environmental media.
Environmental Health and Toxicology 2014;29(1):e2014015-
OBJECTIVES: This paper tried to review a recent research trend for the environmental exposure of engineered nanomaterials (ENMs) and its removal efficiency in the nanowaste treatment plants. METHODS: The studies on the predicted environmental concentrations (PEC) of ENMs obtained by exposure modeling and treatment (or removal) efficiency in nanowaste treatment facilities, such as wastewater treatment plant (WTP) and waste incineration plant (WIP) were investigated. The studies on the landfill of nanowastes also were investigated. RESULTS: The Swiss Federal Laboratories for Materials Science and Technology group has led the way in developing methods for estimating ENM production and emissions. The PEC values are available for surface water, wastewater treatment plant effluents, biosolids, sediments, soils, and air. Based on the PEC modeling, the major routes for the environmental exposure of the ENMs were found as WTP effluents/sludge. The ENMs entered in the WTP were 90-99% removed and accumulated in the activated sludge and sludge cake. Additionally, the waste ash released from the WIP contain ENMs. Ultimately, landfills are the likely final destination of the disposed sludge or discarded ENMs products. CONCLUSIONS: Although the removal efficiency of the ENMs using nanowaste treatment facilities is acceptable, the ENMs were accumulated on the sludge and then finally moved to the landfill. Therefore, the monitoring for the ENMs in the environment where the WTP effluent is discharged or biomass disposed is required to increase our knowledge on the fate and transport of the ENMs and to prevent the unintentional exposure (release) in the environment.
Biomass
;
Environmental Exposure
;
Incineration
;
Nanostructures
;
Plants
;
Sewage
;
Soil
;
Waste Disposal Facilities
;
Waste Water
;
Water pollution
7.Biological Toxicity Effects of Soil Pollution Caused by Galvanized Wastewater Based on Vibrio Qinghaiensis sp.-Q67.
Su Min CHEN ; Yuan Xun ZHANG ; Jing SHANG ; Guo Jie XU
Journal of Forensic Medicine 2020;36(4):445-452
Objective To establish a rapid diagnosis method for the biological toxicity of soil, accurately and rapidly evaluate the toxicity of contaminated sites and identify the dominant pollutants. Methods Take the soil pollution of a galvanized factory as an example, while the metal concentration level was analyzed and detected, a rapid biological toxicity detection method based on the acute toxicity test of luminescent bacteria (Vibrio qinghaiensis sp.-Q67) was established, and the dominant pollutants were identified by stepwise multiple regression. Results The pollutants came from wastewater and metal plating fragments directly discharged from the manufacturing line of the factory. The concentration of those pollutants was correlated with the acute toxicity of Vibrio qinghaiensis sp.-Q67. The dominant pollutants in the study were zinc (Zn), aluminum (Al) and copper (Cu). Conclusion The luminescent bacteria toxicity test method based on Vibrio qinghaiensis sp.-Q67 can conveniently and rapidly assess the degree of toxic damage of polluted soil and identify the dominant pollutants and can be applied to the acute toxicity evaluation of polluted soil.
Luminescence
;
Vibrio
;
Wastewater
8.Loofah immobilized with Cladosporium cladosporioides CEL14 is a potential bioremediating agent for hexavalent chromium in tannery wastewater
Adham Gamal Mohamed ; Adel A. El Mehalawy ; Samar Samir Mohamed
Malaysian Journal of Microbiology 2021;17(5):560-575
Aims:
Chromium salt possesses unique characteristics that render it useful in numerous applications in several industrial processes, especially tanning of animal hides which act as a major source of hexavalent chromium toxicity in environment. This study aimed to evaluate the efficiency of loofah immobilized Cladosporium cladosporioides CEL14 in remediate tannery wastewater which contains hexavalent chromium.
Methodology and results:
A total of 18 fungal species were isolated from three different sites of tannery wastewater in Egypt, of which C. cladosporioides CEL14 was the most capable species of chromate remediation with 81% after 7 days of incubation as free cells. The experiments were conducted in minimum salt medium supplemented with 200 ppm chromate in the form of potassium dichromate. Different process parameters studies demonstrated that chromate was completely removed at 30 °C, pH 6, 0.1% malt extract and 0.2% glucose after 7 days of incubation with 20% inoculum size. After that, C. cladosporioides was immobilized on a natural support material (loofah). The removal ability of chromate was enhanced through permanent viable immobilization on loofah pieces, which showing complete removal of chromate within 3 days. The toxicity assessment of treated tannery effluents revealed that 74% of Brassica napus seeds were germinated upon exposure to the treated effluent.
Conclusion, significance and impact of study
This study revealed that C. cladosporioides CEL14 isolate has high potential as bioremediating agent against toxic hexavalent chromium. The removal ability of toxic chromate was enhanced through permanent viable immobilization on loofah pieces. This technology is simple, cost effective, efficient and environmentally friendly. The loofah immobilized with C. cladosporioides CEL14 has potential to be applied in wastewater treatment of small-scale tanneries after onsite trials.
Luffa
;
Cladosporium
;
Chromium
;
Wastewater
9.Optimization of Inpatient Management of Radioiodine Treatment in Korea.
Min Jae PARK ; Jung Hyun KIM ; Jung Chan JANG ; Chang Ho KIM ; Jae Min JEONG ; Dong Soo LEE
Nuclear Medicine and Molecular Imaging 2008;42(4):261-266
We established a model to calculate radioactive waste from sewage disposal tank of hospitals to optimize the number of patients receiving inpatient radioiodine therapy within the safety guideline in our country. According to this model and calculation of radioactivity concentration using the number of patients per week, the treatment dose of radioiodine, the capacity and the number of sewage tanks and the daily amount of water waste per patient, estimated concentration of radioactivity in sewage waste upon disposal from disposal tanks after longterm retention were within the safety guideline (30 Bq/L) in all the hospitals examined. In addition to the fact that we could increase the number of patients in two thirds of hospitals, we found that the daily amount of waste water was the most important variable to allow the increase of the number of patients within the safety margin of disposed radioactivity. We propose that saving the water amount be led to increase the number of patients and they allow two patients in an already furnished hospital inpatient room to meet the increasing need of inpatient radioiodine treatment for thyroid cancer.
Humans
;
Inpatients
;
Korea
;
Radioactive Waste
;
Radioactivity
;
Retention (Psychology)
;
Sewage
;
Thyroid Gland
;
Waste Water
10.Physicochemical and ecological characteristics of the granular sludge during start-up of Anammox reactor.
Yuxia SONG ; Lei XIONG ; Liyuan CHAI ; Qi LIAO ; Chongjian TANG ; Xiaobo MIN ; Zhihui YANG
Chinese Journal of Biotechnology 2014;30(12):1854-1864
The anaerobic granular sludge from an Internal Circulation (IC) reactor of a paper mill wastewater treatment plant were seeded in an Anammox upflow anaerobic sludge blanket reactor. After 185 days operation, the reactor was finally started up by increasing the influent ammonium and nitrite concentrations to 224 mg/L and 255 mg/L, respectively, with volumetric nitrogen removal rate increasing to 3.76 kg/(m3·d). The physicochemical characteristics of the cultivated Anammox granules were observed by scanning electron microscope, transmission electron microscope and Fourier Transform infrared spectroscopy (FTIR). Results suggested that during the start-up course, the granular sludge initially disintegrated and then re-aggregated. FTIR spectra results revealed that the Anammox granular sludge contained abundant functional groups, indicating that it may also possess good adsorption properties. The ecological structure of the granular sludge, analyzed by the metagenomic sequencing methods, suggested that the relative abundance of the dominant bacterial community in the seeding sludge, i.e., Proteobacteria, Firmicutes, Bacteroidetes, significantly reduced, while Planctomycetes which contains anaerobic ammonium oxidation bacteria remarkably increased from 1.59% to 23.24% in the Anammox granules.
Ammonia
;
chemistry
;
Bacteria
;
Bioreactors
;
Nitrogen
;
chemistry
;
Sewage
;
microbiology
;
Waste Disposal, Fluid
;
methods
;
Waste Water
;
chemistry