1. Clinical application of digital technology in repairing of heel wound with peroneal artery perforator propeller flap
Chinese Journal of Reparative and Reconstructive Surgery 2020;34(3):367-372
Objective: To study the effectiveness of digital technique in repairing of heel wound with peroneal artery perforator propeller flap. Methods: Between March 2016 and March 2019, the heel wounds of 31 patients were repaired with the peroneal artery perforator propeller flaps. There were 21 males and 10 females, with an average age of 36 years (range, 12-53 years). Seventeen patients were admitted to hospital in emergency after trauma, the time from injury to admission was 6.0-12.5 hours, with an average of 8.5 hours; 14 patients were chronic infectious wounds and ulcer. The wound area ranged from 5 cm×4 cm to 12 cm×8 cm. Before flap repair, CT angiography (CTA) data of lower extremity was imported into Mimics19.0 software and three-dimensional reconstruction of peroneal artery perforator and skin model, accurate location of perforator, accurate design of perforator flap, and simulated operation according to the defect range and location were obtained. Results: The origin and course of peroneal artery perforator, the position of perforator, the diameter of perforator, and the maximum length of the naked perforator were determined based on the three-dimensional model. There was no significant difference in locating point of perforator, diameter of perforator, maximum length of naked perforator between the pre- and intra-operative measurements ( P>0.05). The position of the lower perforator of the peroneal artery were on the posterolateral lateral ankle tip (5-10 cm) in 31 cases. The total incidence of perforating branches within 10 cm on the tip of lateral malleolus was 96.9%, and the length of vascular pedicle was (3.44±0.65) cm. The flap removal and transposition in 31 patients were successfully completed. The average operation time was 45 minutes (range, 30-65 minutes). After operation, vein crisis and partial necrosis occurred in 4 cases and 3 cases, respectively, which were survived after symptomatic treatment. All the grafts survived and the incisions healed by first intention. All the patients were followed up 3-18 months, with an average of 12 months. At last follow-up, according to the American Orthopaedic Foot and Ankle Society (AOFAS) score, 17 cases were excellent, 11 cases were good, and 3 cases were fair, and the excellent and good rate was 87.5%. Conclusion: The digital technique can improve the accuracy of perforator localization and the design of peroneal artery perforator propeller flap, and reduce the difficulty of operation, and the risk caused by the variation of vascular anatomy.
2.Microanatomical study of the scapholunate interosseous ligament with micro-CT
Yujian XU ; Yongqing XU ; Haotian LUO ; Xiaoqing HE ; Xulin ZHANG ; Wanqiu ZHAO ; Huan WU ; Libo YUAN
Chinese Journal of Microsurgery 2020;43(1):56-60
Objective:To explore the morphology and vessel distribution of the scapholunate interosseous ligament and anatomical basis for the clinical reconstruction of scapholunate interosseous ligament.Methods:From October, 2018 to December, 2018, 12 fresh wrist joint specimens were perfused with gelatin-lead oxide solution from ulnar or radial artery and scanned under micro-CT. The morphology of scapholunate interosseous ligament in neutral position and the distribution of nutrient vessels in the ligament were observed on reconstructed 3D images by Mimics. The width, length and thickness of palmar, dorsal and proximal ligaments were measured. The anatomical parameters at the entrance of nutrient vessels in the scapholunate interosseous ligament were taken and their relationship with the blood supply to the scapholunate was analyzed.Results:①For scapholunate interosseous ligament, it was found that the average length of the proximal sub-region was the longest, the length of palmar and dorsal sides was similar to each other and the widest and thinnest was in palmar side, while the thickness and width of dorsal and proximal were similar. ②There was no nutrient vessel in the proximal part of the scapholunate interosseous ligament. But there were abundant nutrient vessels in the palmar and dorsal scapholunate interosseous ligament, and there was no significant difference in blood supply to palmar and dorsal scapholunate interosseous ligament ( P>0.05). ③The palmar and dorsal medial nutrient vessels that supply to the scapholunate interosseous ligament enter the scapholunate from the attachment of ligament of scapholunate interosseous joint. Conclusion:The palmar side of the scapholunate interosseous ligament is wider and thinner than that of the other subareas, which makes it more vulnerable to injury from an anatomical point of view. There is abundant blood supply to the palmar and dorsal subareas of the scapholunate interosseous ligament and the supplying vessels anastomose inside the scapholunate bone. There is no distribution of blood vessel at the proximal part of scapholunate interosseous ligament, hence is difficult to heal. An injury of palmar and dorsal ligaments may affect the blood supply of scapholunate.
3.Zuoguiwan Regulates Pdx1 Pathway to Improve Pancreas Development in Offspring of Gestational Diabetes Mellitus Model Rats
Wanqiu LIANG ; Rang CHEN ; Le ZHAO ; Xiaoyi REN ; Qianhui SU ; Yonghui WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):10-19
ObjectiveTo explore the mechanism by which Zuoguiwan improves the pancreas development in the gestational diabetes mellitus (GDM) model by observing the effects of Zuoguiwan on the expression of key regulatory factors in different stages of pancreas development. MethodsPregnant Wistar rats were randomly assigned into blank, model, insulin detemir (20 U·kg-1) and Zuoguiwan (1.89 g·kg-1) groups (n=18). GDM was induced by peritoneal injection of streptozotocin on day 6.5 (E6.5d) in the embryonic stage, and the blank group was given an equal volume of sodium citrate buffer. The modeling performance was assessed by measuring the blood glucose of pregnant rats. Except the blank group and model group, pregnant rats in other groups were administrated with corresponding drugs from E9.5d to delivery. The random blood glucose of pregnant rats was monitored, and the embryos and offspring rats were measured for the length and weighed on E12.5d, E18.5d and day 21 after birth (B21d). The Lee's index of rats on B21d was calculated. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the fasting insulin (FINS) levels of B22d rats and the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) was calculated. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), total cholesterol (CHO), triglyceride (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in E18.5d pregnant rats and B22d offspring were determined. The pathological changes in the pancreas of E12.5d, E18.5d and B22d rats were observed by hematoxylin-eosin (HE) staining. Western blot was used to determine the protein levels of pancreatic duodenal homeobox 1 (Pdx1), pancreas-specific transcription factor 1a (Ptf1a), and sex-determining region Y-box protein 9 (Sox9) in the pancreas of E12.5d embryos, Pdx1, Nkx2 homeobox 2 (Nkx2.2), and hairy and enhancer of split-1 (Hes1) in the pancreas of E18.5d embryos, and Pdx1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa), and NK transcription factor-related homeobox gene family 6 locus 1 (Nkx6.1) in the pancreas of B22d rats. ResultsCompared with the blank group, the model group showed elevated blood glucose levels in pregnant rats on B0d, E9.5d, E12.5d, E15.5d, and E18.5d (P<0.05, P<0.01), decreased body weight and body length (P<0.01) and increased Lee's index in the offspring. In addition, the B22d offspring showed rising levels of FBG, FINS, HOMA-IR, AST, and TG (P<0.01), a declined level of HDL (P<0.01), and pancreatic acinous cells with edema and loose arrangement. The pregnant rats on E18.5d exhibited raised levels of ALT, AST, and TG (P<0.05, P<0.01) in the pancreas and a declined level of HDL (P<0.05). The E12.5d embryos showed up-regulated protein levels of Pdx1, Sox9, and Ptf1a in the pancreas (P<0.01) and the E18.5d embryos exhibited down-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas (P<0.01). The protein levels of Pdx1, Nkx6.1, and Mafa in the pancreas of B22d offspring were down-regulated (P<0.01). Compared with the model group, the insulin group exhibited lowered blood glucose in pregnant rats on B0d, E15.5d, and E18.5d (P<0.05, P<0.01). The offspring in all treatment groups showcased increased body weight and body length (P<0.01) and decreased Lee's index. The B22d offspring exhibited declined levels of FBG, FINS, and HOMA-IR in the insulin group (P<0.01) and lowered levels of FBG and HOMA-IR in the Zuoguiwan group (P<0.01). The B22d offspring in all the treatment groups showed reduced levels of ALT, AST, TBIL, CHO, TG, and LDL, a raised level of HDL, and alleviated edema of pancreatic acinous cells. The pregnant rats on E18.5d demonstrated declined levels of TG and ALT (P<0.05, P<0.01) and an elevated level of HDL (P<0.05). The pancreas of E12.5d embryos presented down-regulated protein levels of Pdx1 and Sox9 and an up-regulated protein level of Ptf1a in the insulin group (P<0.05). The pancreas of E12.5d embryos in the Zuoguiwan group presented down-regulated protein levels of Pdx1, Sox9, and Ptf1a (P<0.01). All the treatment groups showed up-regulated protein levels of Pdx1, Nkx2.2, and Hes1 in the pancreas of E18.5d embryos (P<0.01) and Pdx1, Nkx6.1, and Mafa in the pancreas of B22d embryos (P<0.05, P<0.01). ConclusionZuoguiwan can promote the growth and development and ameliorate the pathological changes in the pancreas of the offspring of GDM model by regulating the expression of Pdx1 pathway-related regulatory factors in different stages of pancreas development.