1.Influence of ilexonin A on the expression of bFGF, GAP-43 and neurogenesis after cerebral ischemia-reperfusion in rats.
Guanyi ZHENG ; Wangqing SHI ; Xiaodong CHEN ; Yuangui ZHU ; Jing ZHANG ; Qiong JIANG
Acta Pharmaceutica Sinica 2011;46(9):1065-71
This study is to observe the effect of ilexonin A (IA) on the expression of basic fibroblast growth factor (bFGF) and growth associated protein-43 (GAP-43), and neurogenesis after cerebral ischemia-reperfusion in rats and explore its possible mechanism of protecting neuronal injury. Models of middle cerebral artery occlusion (MCAO) were established in SD rats. Before and after two hours ischemia-reperfusion, IA (20 and 40 mg x kg(-1)) was injected immediately and on 3, 7, 14, and 28 d once a day. The neurological severity was evaluated by neurological severity scores (NSS); neuronal injury in the boundary zone of the infarction area was evaluated by TUNEL and Niss1 staining. The expressions of bFGF and GAP-43 and neurogenesis were evaluated by Western blotting and 5-bromodeoxyuridine (Brdu) fluorescence staining, respectively. After treatment with IA, the NSS of treatment groups were lower than that of the models (3 and 7 d). The number of TUNEL positive neurons decreased and Nissl positive neurons increased at the same time (3 d). The expressions of bFGF and GAP-43 increased significantly in the boundary zone of the infarction area when compared to model group. Moreover, IA markedly enhanced the neurogenesis in the brain after ischemia-reperfusion, which revealed an increase of Brdu/NeuN positive cells in the boundary zone of the infarction area. The possible mechanism of protecting neuronal injury of IA may be related to inhibition on neuronal apoptosis, upregulation of bFGF and GAP-43, and neurogenesis in boundary zone of infarction after cerebral ischemia-reperfusion.
2.Expression of ACSL4 in gastric cancer tissues and its correlation with prognosis
International Journal of Biomedical Engineering 2019;42(6):474-478
Objective To detect the expression of ACSL4 in human gastric cancer tissue and to analyze its clinical significance. Methods The bioinformatics method was used to analyze the mRNA level of ACSL4 in gastric cancer tissues and normal tissues, and to analyze the relationship between its expression and disease-free survival rate of gastric cancer patients. The clinical and pathological data of 62 patients with gastric cancer who underwent surgical treatment were retrospectively analyzed. Immunohistochemistry was used to detect the expression of ACSL4 protein in gastric cancer tissues and adjacent tissues, and to analyze its relationship with clinicopathological characteristics of gastric cancer patients. Results The results of bioinformatics analysis showed that the mRNA of ACSL4 was significantly overexpressed in gastric cancer tissues, and was significantly related to the disease-free survival rate of patients. Immunohistochemical results showed that ACSL4 was mainly cytoplasmic and highly expressed in gastric cancer tissues, while low or no expression in adjacent tissues. The protein expression level of ACSL4 was related to tumor size and pTNM (all P<0.05), but not to the patient's age, gender and tumor grade (all P>0.05). Conclusions The expression of ACSL4 in gastric cancer tissues is abnormally increased, and it is related to tumor size and pTNM stage. The results of this study suggest that the expression of ACSL4 is related to the prognosis of patients.
3.Effect of methotrexate on regulation for the number of regulatory T cells and expression of Foxp3 in psoriasis.
Yehong KUANG ; Heng ZHANG ; Wu ZHU ; Lisha WU ; Wangqing CHEN ; Yan LU ; Qunshi QIN ; Xuekun JIA ; Liqiu LIAO
Journal of Central South University(Medical Sciences) 2018;43(8):835-842
To explore the role of methotrexate (MTX) in regulating the number of regulatory T cells (Treg) and the mRNA expression of transcription factor Foxp3.
Methods: 1) We analyzed the number of Treg and the mRNA expression of Foxp3 by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR) respectively in patients with psoriasis vulgaris, patients with psoriasis vulgaris after the 8-week treatment of MTX, and healthy people. 2) BALB/c female mice were smeared with imiquimod (IMQ) cream for 6 days. We recorded the change of the lesion in mice every day. The morphological changes of lesion in mice were evaluated by the psoriasis area and severity index (PASI) and HE staining. 3) The mouse model was randomly divided into a control group and an MTX group. The MTX group was treated with different doses of MTX (38.5 and 77.0 nmol/L) on the third day of this experiment. The morphological changes of lesion in mice were evaluated by PASI and HE staining. We tested the number of Treg and the expression level of Foxp3 mRNA in splenic lymphocytes.
Results: 1) The number of Treg and the expression level of Foxp3 mRNA were lower in psoriasis vulgaris patients than those in the healthy control group (P<0.05). After 8-week treatment of MTX, the number of Treg was increased (P<0.05) and Foxp3 mRNA level was up-regulated (P<0.01). 2) Typical psoriasis-like skin lesions, such as red scaly skin plaque were found after topical application of IMQ. Both the number of Treg in the splenic lymphocytes of mice and the Foxp3 mRNA level of Treg were reduced by IMQ (P<0.01 and P<0.05). 3) Different doses of MTX for mice showed the ability to improve skin lesion, increase the number of Treg in the spleen of mice and Foxp3 mRNA level in psoriatic dermatitis of mice (P<0.05).
Conclusion: MTX is able to regulate the number of Treg and Foxp3 mRNA expression in psoriasis.
Adjuvants, Immunologic
;
pharmacology
;
Aminoquinolines
;
pharmacology
;
Animals
;
Case-Control Studies
;
Female
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Imiquimod
;
Immunosuppressive Agents
;
administration & dosage
;
pharmacology
;
Lymphocyte Count
;
Methotrexate
;
administration & dosage
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Psoriasis
;
drug therapy
;
immunology
;
metabolism
;
pathology
;
RNA, Messenger
;
metabolism
;
Random Allocation
;
Spleen
;
cytology
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
metabolism