1.Mechanism of Shenfu Xiongze Prescription in Regulating Autophagy Level to Intervene in Myocardial Remodeling in Rats via AMPK/mTOR Signaling Pathway
Xueqing WANG ; Wei ZHONG ; Liangliang PAN ; Caihong LI ; Man HAN ; Xiaowei YANG ; Yuanwang YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):136-144
ObjectiveTo explore the mechanism by which the Shenfu Xiongze prescription regulates autophagy in rats with myocardial remodeling through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. MethodsA rat model of myocardial remodeling induced by isoprenaline (ISO) was established. Rats were divided into the blank group,the model group,the low-,medium-, and high-dose groups of Shenfu Xiongze prescription,and the captopril group, 6 rats in each group. Except for the blank group,the rat model of myocardial remodeling was established in the other groups by intraperitoneal injection of 2.5 mg·kg-1 ISO for 3 consecutive weeks. At the same time of modeling, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription were administered the corresponding doses of Shenfu Xiongze prescription solution (8.4,16.8,and 33.6 g·kg-1),and the captopril group was administered captopril solution (25 mg·kg-1). As for the blank group and the model group, the same volume of normal saline was given. The treatment was continued for 3 weeks. Echocardiography was used to observe the cardiac structure and function,and the heart weight index was detected. Masson staining and hematoxylin-eosin (HE) staining were used to observe the pathological morphology changes of myocardial tissue. The levels of interleukin-6 (IL-6) and B-type natriuretic peptide (BNP) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of type Ⅰ collagen (Collagen Ⅰ),type Ⅲ collagen (Collagen Ⅲ),and microtubule-associated protein 1 light chain 3 (LC3) proteins in myocardial tissue was determined by immunohistochemistry. Autophagy was observed by transmission electron microscopy. The mRNA expression of Collagen Ⅰ,Collagen Ⅲ,α-smooth muscle actin (α-SMA),LC3,yeast Atg6 homolog protein (Beclin-1),AMPK,and mTOR in myocardial tissue was detected by quantitative real-time polymerase chain reaction (real-time PCR). The protein expression of Collagen Ⅰ,α-SMA,transforming growth factor-β1 (TGF-β1),LC3,Beclin-1,p62, phosphorylation(p)-AMPK,p-mTOR,AMPK,and mTOR was detected by Western blot. ResultsCompared with the normal group,rats in the model group exhibited significantly decreased values of ejection fraction (EF) and left ventricular fractional shortening (FS) (P<0.01), significantly increased values of left ventricular end-diastolic diameter (LVIDd) and left ventricular end-systolic diameter (LVIDs) (P<0.01). Additionally, the model group also showed increased degrees of inflammatory infiltration and fibrosis of myocardial tissue, significantly elevated levels of serum IL-6 and BNP (P<0.01), significantly increased mRNA and protein levels of Collagen Ⅰ,Collagen Ⅲ,α-SMA,and mTOR (P<0.01),and markedly decreased mRNA and protein levels of LC3,Beclin-1,and AMPK (P<0.05,P<0.01). Compared with the model group, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription presented significantly elevated EF and FS values (P<0.01) and lowered LVIDd and LVIDs (P<0.05). In these groups, the inflammation and fibrosis were alleviated significantly. They also exhibited decreased serum levels of IL-6 and BNP (P<0.01), significantly reduced protein expression of Collagen Ⅰ, α-SMA, TGF-β1, p62, and p-mTOR (P<0.01), significantly decreased mRNA expression of Collagen Ⅰ, Collagen Ⅲ, α-SMA, and mTOR (P<0.01), and significantly increased mRNA and protein levels of LC3, Beclin-1, and AMPK (P<0.05,P<0.01). ConclusionThe Shenfu Xiongze prescription can improve the myocardial remodeling induced by ISO in rats by regulating the autophagy level,enhance cardiac function,and reduce inflammatory and fibrotic levels. This effect may be achieved through the AMPK/mTOR signaling pathway.
2.In Vitro and In Vivo Chemical Composition Analysis of Reference Sample of Jinshui Liujunjian Based on UPLC-Q-TOF-MS/MS
Xinyue YANG ; Huiyu LI ; Yaqi LOU ; Xingxing WANG ; Guifang YU ; Chenfeng ZHANG ; Zhenzhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):166-173
ObjectiveTo elucidate the chemical composition of the reference sample of Jinshui Liujunjian and its distribution characteristics in blood and tissues of rats. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detect the reference sample solution, plasma, and tissue samples of Jinshui Liujunjian under positive and negative ion modes, respectively. Qualitative Analysis 10.0 software and a self-constructed database were employed for primary mass spectrum matching.Compound identification was further validated by comparing retention times, secondary mass spectral fragments, reference standards, and literature data to deduce fragmentation pathways. ResultsA total of 122 compounds were identified in the reference sample of Jinshui Liujunjian, including 47 flavonoids, 5 amino acids, 13 iridoids, 16 triterpenoid saponins, etc., of which 42 compounds were confirmed by comparison with reference substances. A total of 21 prototype components were identified in blood components; 50 prototype components were identified in different tissues, among which 13, 10, 7, 21, 11, 6, 14, and 40 prototype components were identified in the heart, liver, spleen, lung, kidney, brain, large intestine, and stomach, respectively. Among them, 7 compounds such as ferulic acid, glycyrrhizic acid, and nobiletin were exposed in the target organs of lung and kidney. ConclusionThis study elucidates the material basis of the reference samples of Jinshui Liujunjian, primarily composed of flavonoids and triterpenoid saponins, along with their in vivo distribution characteristics. These findings provide a scientific basis for establishing quality evaluation indicators and offer references for subsequent pharmacodynamic and pharmacokinetic investigations.
3.In Vitro and In Vivo Chemical Composition Analysis of Reference Sample of Jinshui Liujunjian Based on UPLC-Q-TOF-MS/MS
Xinyue YANG ; Huiyu LI ; Yaqi LOU ; Xingxing WANG ; Guifang YU ; Chenfeng ZHANG ; Zhenzhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):166-173
ObjectiveTo elucidate the chemical composition of the reference sample of Jinshui Liujunjian and its distribution characteristics in blood and tissues of rats. MethodsUltra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detect the reference sample solution, plasma, and tissue samples of Jinshui Liujunjian under positive and negative ion modes, respectively. Qualitative Analysis 10.0 software and a self-constructed database were employed for primary mass spectrum matching.Compound identification was further validated by comparing retention times, secondary mass spectral fragments, reference standards, and literature data to deduce fragmentation pathways. ResultsA total of 122 compounds were identified in the reference sample of Jinshui Liujunjian, including 47 flavonoids, 5 amino acids, 13 iridoids, 16 triterpenoid saponins, etc., of which 42 compounds were confirmed by comparison with reference substances. A total of 21 prototype components were identified in blood components; 50 prototype components were identified in different tissues, among which 13, 10, 7, 21, 11, 6, 14, and 40 prototype components were identified in the heart, liver, spleen, lung, kidney, brain, large intestine, and stomach, respectively. Among them, 7 compounds such as ferulic acid, glycyrrhizic acid, and nobiletin were exposed in the target organs of lung and kidney. ConclusionThis study elucidates the material basis of the reference samples of Jinshui Liujunjian, primarily composed of flavonoids and triterpenoid saponins, along with their in vivo distribution characteristics. These findings provide a scientific basis for establishing quality evaluation indicators and offer references for subsequent pharmacodynamic and pharmacokinetic investigations.
4.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
5.Efficacy and Safety of Qihuang Acupuncture Theory Combined with Opioid Analgesics in the Treatment of Moderate to Severe Cancer Pain in Lung Cancer Patients:a Randomize-Controlled Trial
Yingqi WANG ; Ruifang YU ; Jinpeng HUANG ; Guiya LIAO ; Ziyan GAN ; Zhenhu CHEN ; Xiaobing YANG ; Chunzhi TANG
Journal of Traditional Chinese Medicine 2025;66(4):358-366
ObjectiveTo observe the analgesic efficacy and safety of Qihuang acupuncture theory combined with opioid analgesics in patients with moderate to severe cancer pain due to lung cancer. MethodsPatients with moderate to severe cancer pain from lung cancer were randomly divided into Qihuang acupuncture group and control group, with 33 cases in each group. The control group was treated with long-acting opioid analgesics at maintenance doses and supplementary analgesic medications as needed. In case of breakthrough pain, short-acting opioids were used for rescue. The Qihuang acupuncture group received Qihuang acupuncture treatment in addition to the treatment used in the control group, administered once every other day, with 3 sessions constituting one treatment course. The treatment duration for both groups was 5 days. The primary outcome was the change in pain intensity, measured using the numerical rating scale (NRS) before and after treatment, and the NRS change rate was calculated. Secondary endpoints included the daily NRS change rate, the Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) score, the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) score, and the 24-hour equivalent hydrocodone sustained-release tablet dose. Laboratory tests, including routine blood, urine, stool, liver function, and kidney function, were performed before and after treatment. Adverse events were recorded throughout the trial. ResultsAll patients completed the trial, and both groups showed a decrease in average NRS scores and PS scores after treatment, with the Qihuang acupuncture group showing lower average NRS scores and PS scores than the control group (P<0.05 or P<0.01). After treatment, the NRS change rate in the Qihuang acupuncture group was (0.42±0.17), significantly higher than that in the control group (0.14±0.27, P<0.01). The daily NRS change rate during treatment was also higher in the Qihuang acupuncture group compared to the control group (P<0.01). The Qihuang acupuncture group showed an increase in overall health status and functional scores in the EORTC QLQ-C30, and a decrease in symptom scores for fatigue, nausea and vomiting, pain, dyspnea, insomnia, appetite loss, constipation, and financial difficulties. In contrast, overall health status and constipation scores in the control group increased, while scores of fatigue, nausea and vomiting, pain, and appetite loss decreased (P<0.05 or P<0.01). After treatment, the 24-hour equivalent hydrocodone sustained-release tablet dose did not show significant difference in the Qihuang acupuncture group (P>0.05), while the control group showed a significant increase in the 24-hour dose (P<0.01). No significant abnormalities were observed in laboratory tests before and after treatment in either group. During the study, the incidence of nausea and vomiting as well as constipation in the Qihuang acupuncture group was both 3.03% (1/33), while the incidence in the control group was 27.27% (9/33) and 36.36% (12/33), respectively, with the Qihuang acupuncture group showing significantly lower incidence (P<0.01). No serious adverse reactions were observed in either group. ConclusionQihuang acupuncture therapy combined with opioid analgesics is more effective than using opioids alone in relieving pain in patients with moderate to severe cancer pain due to lung cancer. It can improve the patients' physical condition and quality of life, reduce the dose of opioid analgesics, and has good safety.
6.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
7.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
8.Causal association of obesity and chronic pain mediated by educational attainment and smoking: a mediation Mendelian randomization study
Yunshu LYU ; Qingxing LU ; Yane LIU ; Mengtong XIE ; Lintong JIANG ; Junnan LI ; Ning WANG ; Xianglong DAI ; Yuqi YANG ; Peiming JIANG ; Qiong YU
The Korean Journal of Pain 2025;38(2):177-186
Background:
Obesity and chronic pain are related in both directions, according to earlier observational research.This research aimed to analyze the causal association between obesity and chronic pain at the genetic level, as well as to assess whether common factors mediate this relationship.
Methods:
This study used bidirectional two sample Mendelian randomization (MR) technique to analyze the association between obesity and chronic pain. Obesity's summary genome-wide association data were obtained from European ancestry groups, as measured by body mass index (BMI), waist-to-hip ratio, waist circumference (WC), and hip circumference (HC), genome-wide association study data for chronic pain also came from the UK population, including chronic pain at three different sites (back, hip, and headache), chronic widespread pain (CWP), and multisite chronic pain (MCP). Secondly, a two-step MR and multivariate MR investigation was performed to evaluate the mediating effects of several proposed confounders.
Results:
The authors discovered a link between chronic pain and obesity. More specifically, a sensitivity analysis was done to confirm the associations between greater BMI, WC, and HC with an increased risk of CWP and MCP.Importantly, the intermediate MR results suggest that education levels and smoking initiation may mediate the causal relationship between BMI on CWP, with a mediation effect of 23.08% and 15.38%, respectively.
Conclusions
The authors’ findings demonstrate that the importance of education and smoking in understanding chronic pain’s pathogenesis, which is important for the primary prevention and prognosis of chronic pain.
9.Protective effects of exosomes derived from MSCs in radiation-induced lung injury
Lili WANG ; Zien YANG ; Mingyue OUYANG ; Sining XING ; Song ZHAO ; Huiying YU
Chinese Journal of Radiological Health 2025;34(1):13-20
Objective To investigate the role and related mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in radiation-induced lung injury (RILI). Methods Human umbilical cord-derived MSCs were isolated and cultured for the extraction and identification of exosomes. Eighteen male SD rats were randomly divided into Control group, RILI group and RILI + exosomes group (EXO group), with 6 rats in each group. Except for Control group, the other groups received a single X-ray dose of 30 Gy to the right lung. Immediately after irradiation, the EXO group was administered 2 × 109 exosomes/kg via tail vein injection. Control group and RILI group were given the same volume of normal saline. Eight weeks post-irradiation, the rats were sacrificed, lung tissue and peripheral venous blood were collected. HE and Masson staining were employed to observe the pathological and fibrotic changes of lung tissue. The levels of serum inflammatory factors IL-6, IFN-γ, TNF-α, and IL-10 were detected by ELISA. RT-qPCR was used to assess the mRNA levels of IL-1β, IL-6, Cdh1, and Col1a1 in lung tissue. The expression levels of Vimentin and TGF-β1 in lung tissue were measured by immunohistochemical staining. The expression levels of AMPK, p-AMPK, and TGF-β1 in lung tissue were detected by Western blot. Results MSC-derived exosomes were successfully extracted and identified. Compared with RILI group, EXO group showed significantly reduced pathological changes of lung inflammation and collagen deposition. The levels of serum inflammatory factors IL-6, INF-γ, and TNF-α were significantly decreased (P < 0.05), and the level of anti-inflammatory factor IL-10 was significantly increased (P < 0.05). The mRNA levels of IL-1β, IL-6, and Col1a1 in lung tissue were significantly decreased (P < 0.05 or P < 0.01), and the mRNA level of Cdh1 was significantly increased (P < 0.05 or P < 0.01). The levels of Vimentin and TGF-β1 in lung tissue were significantly reduced, while p-AMPK level was significantly up-regulated (P < 0.05). Conclusion Exosomes derived from MSCs may alleviate RILI by inhibiting inflammatory responses and regulating epithelial-mesenchymal transition mediated by AMPK/TGF-β1 signaling pathway.
10.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed

Result Analysis
Print
Save
E-mail