1.The effect of electro-acupuncture on endogenous EPCs and serum cytokines in cerebral ischemia-reperfusion rat.
Ying ZHAO ; Sijia CHEN ; Wenjuan YU ; Saoxi CAI ; Li ZHANG ; Xiuzhi WANG ; Anke TANG
Journal of Biomedical Engineering 2010;27(6):1322-1326
In this research project, rats were made into animal models of acute focal cerebral ischemia and reperfusion (IR) by occlusion of their middle cerebral artery (MCAO). We observed the effect of endogenous endothelial progenitor cells (EPCs) and serum cytokines on cerebral ischemia rats treated by electro-acupuncture(EA). The results showed: MCAO model had high stability after EA treatment which was delivered via the acupuncture needles inserted into "quchi" and "zusanli" points, the nervous functions of cerebral IR rats recovered faster than those of rats not treated; EPCs in rats' blood increased after acute focal cerebral ischemia and reperfusion; and the growth rate was obvious in IR group. This phenomenon might be related to the inflammation elicited by injury of ischemia and self-repair. Besides, EA treatment could decrease induced nitric oxide synthase (iNOS) activity, alleviate injury after cerebral ischemia, and regulate the quantity of EPCs in blood. The quantity of EPCs in blood increased in IR-24hr. In IR-48 hr, the rise of EPCs quantity was significant (P < 0.01). The level of vascular endothelium growth factor (VEGF) in serum of rats after cerebral ischemia was escalated, which indicated to a certain extent that cerebral ischemia could stimulate stress reaction. EA treatment could raise VEGF level, which suggested that high expression of VEGF could accelerate mobilization, chemotaxis and homing of EPCs. At the same time, the levels of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) also changed. In conclusion, EA treatment could promote neovascularization after cerebral ischemia by mobilizing EPCs, decreasing iNOS activity and increasing VEGF level. This may be one of the ways by which EA could treat cerebral ischemia.
Animals
;
Brain Ischemia
;
blood
;
complications
;
pathology
;
Cytokines
;
blood
;
Electroacupuncture
;
Endothelial Cells
;
cytology
;
Infarction, Middle Cerebral Artery
;
blood
;
pathology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
blood
;
pathology
;
Stem Cells
;
cytology
2.Effect of platelet-rich fibrin extract on the proliferation of gingival fibroblasts
HE Jialin ; XU Yan ; XIE Xianzhe ; WANG Tengfei ; HUO Dongmei
Journal of Prevention and Treatment for Stomatological Diseases 2019;27(8):490-495
Objective:
To study the effects of platelet-rich fibrin extract (PRFe) and platelet-derived growth factor (PDGF) released from PRFe on the proliferation of human gingival fibroblasts (HGFs) and to provide an experimental basis for its application in promoting gingival soft tissue increment.
Methods:
Platelet-rich fibrin (PRF) was transformed into PRFe by tissue culture. The three-dimensional structure of PRF was observed by electron microscopy, and the content of PDGF in PRF was quantitatively determined by ELISA. The ratios of PRFe examined were 2.5% PRFe, 5% PRFe, 7.5% PRFe, 10% PRFe, 12.5% PRFe and 15% PRFe. Gingival fibrosis was detected by the CCK-8 method. After determining the optimal concentration of PRFe, flow cytometry was used to detect the effect of PRFe on the proliferation cycle of human gingival fibroblasts, and the effect of PDGF on the proliferative activity of gingival fibroblasts was observed by neutralizing the release of PDGF.
Results :
PRF is a three-dimensional reticular structure that contains a large number of growth factors. PDGF release peaked on the 7th day. The proliferative activity of HGFs cultured with different concentrations of PRFe was concentration-dependent, but the effect was optimal at 5% PRFe (P < 0.05). There were no significant differences in the effect of subsequent concentration increases on the proliferation of HGFs (P > 0.05). The flow cytometry results showed that 5% PRFe could significantly stimulate the S-phase division and proliferation of gingival fibroblasts, while the PDGF neutralization test showed that the proliferation of gingival fibroblasts was significantly inhibited by the neutralization of PDGF.
Conclusion
Overall 5% PRFe had the best effect on promoting gingival fibroblast proliferation in vitro. PDGF released from PRF plays an important role in promoting the proliferation of gingival fibroblasts.
3.Killing Effect of A CD7 Chimeric Antigen Receptor-Modified NK-92MI Cell Line on CD7-Positive Hematological Malignant Cells.
Xin-Ying ZHU ; Xin LIU ; Xing-Bing WANG ; An-You WANG ; Min WANG ; Na-Na LIU ; Feng-Tao YOU ; Gui-Fang PAN ; Lin YANG
Journal of Experimental Hematology 2020;28(4):1367-1375
OBJECTIVE:
To investigate the killing effect of NK-92MI cells modified by chimeric antigen receptor (CD7-CAR) and specifically targeting CD7 to CD7 hematological malignant cells.
METHODS:
Three types of hematological malignant tumor cells, including 5 cases of CD7 acute T-lymphoblastic leukemia (T-ALL), 10 cases of acute myeloid leukemia (AML) and 6 cases of T-cell lymphoma were collected, centrifuged, cultured and used to detect the expression levels of tumor cell surface targets; 7-AAD, CD56-APC, CD3-FITC, IgG Fc-PE flow cytometry were used to detected the transfection efficiency of NK-92MI and CD7-CAR-NK-92MI cells, killing efficiencies of CD7-CAR-NK-92MI cells to CD7 hematological tumor cells in vitro were determined by flow cytometry using PE Annexin V Apoptosis Detection Kit. Secretion differences of NK-92MI and CD7-CAR-NK-92MI cytokines interleukin (IL)-2, interferon (IFN)-γ, and granzyme B detection were estimated by using CBA kit.
RESULTS:
The killing efficiencies of CD7-CAR-modified NK-92MI cells to CD7 T-ALL, AML, T-cell lymphoma tumor cells were significantly higher than those of NK-92MI cells without genetical modification. The difference showed statistically significant (P<0.05). The level of IFN-γ and granzyme B were significantly increased among cytokines secreted by CD7-CAR-modified NK-92MI cells as compared with those of NK-92MI cells without genetical modification (P<0.05) .
CONCLUSION
CD7-CAR-modified NK-92MI cells have significantly improved killing efficiency against CD7 T-ALL, AML and T lymphoma cells, and shows specific targeting effects, which provides a clinical basis for the treatment of CD7 hematological malignancies.
Cell Line, Tumor
;
Humans
;
Killer Cells, Natural
;
Leukemia, Myeloid, Acute
;
Receptors, Chimeric Antigen
;
T-Lymphocytes
4.Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage
Jingwei ZHENG ; Haijian WU ; Xiaoyu WANG ; Guoqiang ZHANG ; Jia'nan LU ; Weilin XU ; Shenbin XU ; Yuanjian FANG ; Anke ZHANG ; Anwen SHAO ; Sheng CHEN ; Zhen ZHAO ; Jianmin ZHANG ; Jun YU
Journal of Pharmaceutical Analysis 2023;13(8):862-879
The role of glial scar after intracerebral hemorrhage(ICH)remains unclear.This study aimed to inves-tigate whether microglia-astrocyte interaction affects glial scar formation and explore the specific function of glial scar.We used a pharmacologic approach to induce microglial depletion during different ICH stages and examine how ablating microglia affects astrocytic scar formation.Spatial transcriptomics(ST)analysis was performed to explore the potential ligand-receptor pair in the modulation of microglia-astrocyte interaction and to verify the functional changes of astrocytic scars at different periods.During the early stage,sustained microglial depletion induced disorganized astrocytic scar,enhanced neutrophil infiltration,and impaired tissue repair.ST analysis indicated that microglia-derived insulin like growth factor 1(IGF1)modulated astrocytic scar formation via mechanistic target of rapamycin(mTOR)signaling activation.Moreover,repopulating microglia(RM)more strongly activated mTOR signaling,facilitating a more protective scar formation.The combination of IGF1 and osteopontin(OPN)was necessary and sufficient for RM function,rather than IGF1 or OPN alone.At the chronic stage of ICH,the overall net effect of astrocytic scar changed from protective to destructive and delayed microglial depletion could partly reverse this.The vital insight gleaned from our data is that sustained microglial depletion may not be a reasonable treatment strategy for early-stage ICH.Inversely,early-stage IGF1/OPN treatment combined with late-stage PLX3397 treatment is a promising therapeutic strategy.This prompts us to consider the complex temporal dynamics and overall net effect of microglia and astrocytes,and develop elaborate treatment strategies at precise time points after ICH.
5.The Genome Sequence Archive Family:Toward Explosive Data Growth and Diverse Data Types
Chen TINGTING ; Chen XU ; Zhang SISI ; Zhu JUNWEI ; Tang BIXIA ; Wang ANKE ; Dong LILI ; Zhang ZHEWEN ; Yu CAIXIA ; Sun YANLING ; Chi LIANJIANG ; Chen HUANXIN ; Zhai SHUANG ; Sun YUBIN ; Lan LI ; Zhang XIN ; Xiao JINGFA ; Bao YIMING ; Wang YANQING ; Zhang ZHANG ; Zhao WENMING
Genomics, Proteomics & Bioinformatics 2021;19(4):578-583
The Genome Sequence Archive (GSA) is a data repository for archiving raw sequence data, which provides data storage and sharing services for worldwide scientific communities. Considering explosive data growth with diverse data types, here we present the GSA family by expanding into a set of resources for raw data archive with different purposes, namely, GSA (https://ngdc.cncb.ac.cn/gsa/), GSA for Human (GSA-Human, https://ngdc.cncb.ac.cn/gsa-human/), and Open Archive for Miscellaneous Data (OMIX, https://ngdc.cncb.ac.cn/omix/). Compared with the 2017 version, GSA has been significantly updated in data model, online functionalities, and web interfaces. GSA-Human, as a new partner of GSA, is a data repository specialized in human genetics-related data with controlled access and security. OMIX, as a critical complement to the two resources mentioned above, is an open archive for miscellaneous data. Together, all these resources form a family of resources dedicated to archiving explosive data with diverse types, accepting data submissions from all over the world, and providing free open access to all publicly available data in support of worldwide research activities.
6.Key technologies in digital breast tomosynthesis system:theory, design, and optimization.
Mingqiang LI ; Kun MA ; Xi TAO ; Yongbo WANG ; Ji HE ; Ziquan WEI ; Geofeng CHEN ; Sui LI ; Dong ZENG ; Zhaoying BIAN ; Guohui WU ; Shan LIAO ; Jianhua MA
Journal of Southern Medical University 2019;39(2):192-200
OBJECTIVE:
To develop a digital breast tomosynthesis (DBT) imaging system with optimizes imaging chain.
METHODS:
Based on 3D tomography and DBT imaging scanning, we analyzed the methods for projection data correction, geometric correction, projection enhancement, filter modulation, and image reconstruction, and established a hardware testing platform. In the experiment, the standard ACR phantom and high-resolution phantom were used to evaluate the system stability and noise level. The patient projection data of commercial equipment was used to test the effect of the imaging algorithm.
RESULTS:
In the high-resolution phantom study, the line pairs were clear without confusing artifacts in the images reconstructed with the geometric correction parameters. In ACR phantom study, the calcified foci, cysts, and fibrous structures were more clearly defined in the reconstructed images after filtering and modulation. The patient data study showed a high contrast between tissues, and the lesions were more clearly displayed in the reconstructed image.
CONCLUSIONS
This DBT imaging system can be used for mammary tomography with an image quality comparable to that of commercial DBT systems to facilitate imaging diagnosis of breast diseases.
Algorithms
;
Artifacts
;
Breast
;
diagnostic imaging
;
Female
;
Humans
;
Mammography
;
methods
;
Phantoms, Imaging
;
Radiographic Image Enhancement
;
methods
7.Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis.
Guozheng WANG ; Yi YANG ; Kangli DONG ; Anke HUA ; Jian WANG ; Jun LIU
Neuroscience Bulletin 2024;40(1):79-89
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Humans
;
Muscle, Skeletal
;
Electromyography/methods*
;
Electroencephalography/methods*
;
Brain
;
Brain Mapping
8.The Global Landscape of SARS-CoV-2 Genomes, Variants, and Haplotypes in 2019nCoVR
Song SHUHUI ; Ma LINA ; Zou DONG ; Tian DONGMEI ; Li CUIPING ; Zhu JUNWEI ; Chen MEILI ; Wang ANKE ; Ma YINGKE ; Li MENGWEI ; Teng XUFEI ; Cui YING ; Duan GUANGYA ; Zhang MOCHEN ; Jin TONG ; Shi CHENGMIN ; Du ZHENGLIN ; Zhang YADONG ; Liu CHUANDONG ; Li RUJIAO ; Zeng JINGYAO ; Hao LILI ; Jiang SHUAI ; Chen HUA ; Han DALI ; Xiao JINGFA ; Zhang ZHANG ; Zhao WENMING ; Xue YONGBIAO ; Bao YIMING
Genomics, Proteomics & Bioinformatics 2020;18(6):749-759
On January 22, 2020, China National Center for Bioinformation (CNCB) released the 2019 Novel Coronavirus Resource (2019nCoVR), an open-access information resource for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 2019nCoVR features a comprehensive integra-tion of sequence and clinical information for all publicly available SARS-CoV-2 isolates, which are manually curated with value-added annotations and quality evaluated by an automated in-house pipeline. Of particular note, 2019nCoVR offers systematic analyses to generate a dynamic landscape of SARS-CoV-2 genomic variations at a global scale. It provides all identified variants and their detailed statistics for each virus isolate, and congregates the quality score, functional annotation,and population frequency for each variant. Spatiotemporal change for each variant can be visualized and historical viral haplotype network maps for the course of the outbreak are also generated based on all complete and high-quality genomes available. Moreover, 2019nCoVR provides a full collection of SARS-CoV-2 relevant literature on the coronavirus disease 2019 (COVID-19), including published papers from PubMed as well as preprints from services such as bioRxiv and medRxiv through Europe PMC. Furthermore, by linking with relevant databases in CNCB, 2019nCoVR offers data submission services for raw sequence reads and assembled genomes, and data sharing with NCBI. Collectively, SARS-CoV-2 is updated daily to collect the latest information on genome sequences, variants, hap-lotypes, and literature for a timely reflection, making 2019nCoVR a valuable resource for the global research community. 2019nCoVR is accessible at https://bigd.big.ac.cn/ncov/.