1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Cancer Research and Treatment 2024;56(3):721-742
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
6.A Nationwide Study on HER2-Low Breast Cancer in South Korea: Its Incidence of 2022 Real World Data and the Importance of Immunohistochemical Staining Protocols
Min Chong KIM ; Eun Yoon CHO ; So Yeon PARK ; Hee Jin LEE ; Ji Shin LEE ; Jee Yeon KIM ; Ho-chang LEE ; Jin Ye YOO ; Hee Sung KIM ; Bomi KIM ; Wan Seop KIM ; Nari SHIN ; Young Hee MAENG ; Hun Soo KIM ; Sun Young KWON ; Chungyeul KIM ; Sun-Young JUN ; Gui Young KWON ; Hye Jeong CHOI ; So Mang LEE ; Ji Eun CHOI ; Ae Ri AN ; Hyun Joo CHOI ; EunKyung KIM ; Ahrong KIM ; Ji-Young KIM ; Jeong Yun SHIM ; Gyungyub GONG ; Young Kyung BAE
Cancer Research and Treatment 2024;56(4):1096-1104
Purpose:
Notable effectiveness of trastuzumab deruxtecan in patients with human epidermal growth factor receptor 2 (HER2)–low advanced breast cancer (BC) has focused pathologists’ attention. We studied the incidence and clinicopathologic characteristics of HER2-low BC, and the effects of immunohistochemistry (IHC) associated factors on HER2 IHC results.
Materials and Methods:
The Breast Pathology Study Group of the Korean Society of Pathologists conducted a nationwide study using real-world data on HER2 status generated between January 2022 and December 2022. Information on HER2 IHC protocols at each participating institution was also collected.
Results:
Total 11,416 patients from 25 institutions included in this study. Of these patients, 40.7% (range, 6.0% to 76.3%) were classified as HER2-zero, 41.7% (range, 10.5% to 69.1%) as HER2-low, and 17.5% (range, 6.7% to 34.0%) as HER2-positive. HER2-low tumors were associated with positive estrogen receptor and progesterone receptor statuses (p < 0.001 and p < 0.001, respectively). Antigen retrieval times (≥ 36 minutes vs. < 36 minutes) and antibody incubation times (≥ 12 minutes vs. < 12 minutes) affected on the frequency of HER2 IHC 1+ BC at institutions using the PATHWAY HER2 (4B5) IHC assay and BenchMark XT or Ultra staining instruments. Furthermore, discordant results between core needle biopsy and subsequent resection specimen HER2 statuses were observed in 24.1% (787/3,259) of the patients.
Conclusion
The overall incidence of HER2-low BC in South Korea concurs with those reported in previously published studies. Significant inter-institutional differences in HER2 IHC protocols were observed, and it may have impact on HER2-low status. Thus, we recommend standardizing HER2 IHC conditions to ensure precise patient selection for targeted therapy.
7.Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: a joint report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-Kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Journal of Pathology and Translational Medicine 2024;58(4):147-164
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
8.Survival Benefit of Adjuvant Chemotherapy in Patients with Pancreatic Ductal Adenocarcinoma Who Underwent Surgery Following Neoadjuvant FOLFIRINOX
So Heun LEE ; Dae Wook HWANG ; Changhoon YOO ; Kyu-pyo KIM ; Sora KANG ; Jae Ho JEONG ; Dongwook OH ; Tae Jun SONG ; Sang Soo LEE ; Do Hyun PARK ; Dong Wan SEO ; Jin-hong PARK ; Ki Byung SONG ; Jae Hoon LEE ; Woohyung LEE ; Yejong PARK ; Bong Jun KWAK ; Heung-Moon CHANG ; Baek-Yeol RYOO ; Song Cheol KIM
Cancer Research and Treatment 2023;55(3):956-968
Purpose:
The benefit of adjuvant chemotherapy following curative-intent surgery in pancreatic ductal adenocarcinoma (PDAC) patients who had received neoadjuvant FOLFIRINOX is unclear. This study aimed to assess the survival benefit of adjuvant chemotherapy in this patient population.
Materials and Methods:
This retrospective study included 218 patients with localized non-metastatic PDAC who received neoadjuvant FOLFIRINOX and underwent curative-intent surgery (R0 or R1) between January 2017 and December 2020. The association of adjuvant chemotherapy with disease-free survival (DFS) and overall survival (OS) was evaluated in overall patients and in the propensity score matched (PSM) cohort. Subgroup analysis was conducted according to the pathology-proven lymph node status.
Results:
Adjuvant chemotherapy was administered to 149 patients (68.3%). In the overall cohort, the adjuvant chemotherapy group had significantly improved DFS and OS compared to the observation group (DFS: median, 13.8 months [95% confidence interval (CI), 11.0 to 19.1] vs. 8.2 months [95% CI, 6.5 to 12.0]; p < 0.001; and OS: median, 38.0 months [95% CI, 32.2 to not assessable] vs. 25.7 months [95% CI, 18.3 to not assessable]; p=0.005). In the PSM cohort of 57 matched pairs of patients, DFS and OS were better in the adjuvant chemotherapy group than in the observation group (p < 0.001 and p=0.038, respectively). In the multivariate analysis, adjuvant chemotherapy was a significant favorable prognostic factor (vs. observation; DFS: hazard ratio [HR], 0.51 [95% CI, 0.36 to 0.71; p < 0.001]; OS: HR, 0.45 [95% CI, 0.29 to 0.71; p < 0.001]).
Conclusion
Among PDAC patients who underwent surgery following neoadjuvant FOLFIRINOX, adjuvant chemotherapy may be associated with improved survival. Randomized studies should be conducted to validate this finding.
9.Nasal Septal Deviation and Incidental Paranasal Sinus Opacification: A Role of Computed Tomography
Soo Young CHOI ; So Young JEON ; Hwa Sung RIM ; Sung Wan KIM ; Jin-Young MIN
Journal of Rhinology 2021;28(1):50-56
Background and Objectives:
The purpose of this study was to investigate the prevalence of incidental paranasal sinus (PNS) opacification in nasal septal deviation (NSD) using computed tomography (CT) and to identify contributing factors.Subjects and Method: We analyzed 216 patients who underwent septoplasty for the correction of NSD and who underwent preoperative PNS CT. We assessed the prevalence of incidental PNS opacification in these patients and determined the type of NSD according to Mladina classification. We also evaluated whether the direction of NSD affected the presence of PNS opacification on CT, and whether the presence of PNS opacification was associated with other rhinologic symptoms.
Results:
Of 216 patients with NSD, 86 showed opacified PNS on CT. According to Mladina classification, NSD patients were classified as type I (24.1%), type II (36.1%), type III (20.8%), type IV (5.6%), type V (9.7%), type VI (2.3%), or type VII (1.4%). Patients with type II NSD showed a significantly higher incidence of PNS opacification compared with other types of NSD (p=0.001). However, the direction of NSD did not significantly influence the presence of incidental PNS opacification. Furthermore, regardless of the presence of PNS opacification, there was no significant difference in rhinologic symptoms such as olfactory dysfunction, among others.
Conclusion
We found that incidental PNS opacification on CT was common in NSD patients, especially in patients with type II NSD. Thus, we suggest that CT evaluation of patients with NSD may be helpful for assessing comorbid PNS pathologies as well as objectively identifying nasal septal deformities.
10.Simplified disease activity changes in real-world practice: a nationwide observational study of seropositive rheumatoid arthritis patients with moderate-to-high disease activity
Kichul SHIN ; Sung Soo KIM ; Sang-Heon LEE ; Seung-Jae HONG ; Sung Jae CHOI ; Jung-Yoon CHOE ; Seung-Geun LEE ; Hoon-Suk CHA ; Eun Young LEE ; Sung-Hwan PARK ; Jin-Wuk HUR ; Sung Soo NA ; Chang-Hee SUH ; Min Wook SO ; Seung Won CHOI ; Dong-Hyuk SHEEN ; Won PARK ; Shin-Seok LEE ; Wan Hee RYU ; Jin Seok KIM ; Jung Soo SONG ; Hye Soon LEE ; Seong Ho KIM ; Dae-Hyun YOO
The Korean Journal of Internal Medicine 2020;35(1):231-239
The objective of this study was to compare changes in the simplified disease activity index (SDAI) between biologic (b) and conventional (c) disease-modifying antirheumatic drugs (DMARD) users with seropositive rheumatoid arthritis (RA) in daily clinical practice. Methods: This was a nationwide multicenter observational study. Patients who had three or more active joint counts and abnormal inf lammatory marker in blood test were enrolled. The selection of DMARDs was determined by the attending rheumatologist. Clinical parameters, laboratory findings, and Health Assessment Questionnaire (HAQ) scores were obtained at baseline and at 6 and 12 months. Serial SDAI changes and clinical remission rate at 6 and 12 months were assessed. Results: A total of 850 patients participated in this study. The mean baseline SDAI score in bDMARD group was higher than that in cDMARD group (32.08 ± 12.98 vs 25.69 ± 10.97, p < 0.0001). Mean change of SDAI at 12 months was –19.0 in the bDMARD group and –12.6 in the cDMARD group (p < 0.0001). Clinical remission rates at 12 months in bDMARD and cDMARD groups were 15.4% and 14.6%, respectively. Patient global assessment and HAQ at 12 months were also significantly improved in both groups. Multivariate logistic regression showed that baseline HAQ score was the most notable factor associated with remission. Conclusions: There was a significant reduction in SDAI within 12 months after receiving DMARDs in Korean seropositive RA patients irrespective of bDMARD or cDMARD use in real-world practice. Clinical remission was achieved in those with lower baseline HAQ scores.

Result Analysis
Print
Save
E-mail