1.Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal.
Caihong CUI ; Huacong MIAO ; Tie LIANG ; Xiuling LIU ; Xiaoguang LIU
Journal of Biomedical Engineering 2023;40(5):938-944
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8-13 Hz), beta frequency band (14-30 Hz) and gamma frequency band (31-60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.
Humans
;
Walking Speed
;
Muscle, Skeletal/physiology*
;
Electromyography
;
Gait/physiology*
;
Walking/physiology*
2.Differences of body composition and physical strength among Japanese and Thai older adults living in Chiang Mai, Thailand: an inter-ethnic cross-sectional study.
Takeshi YODA ; Bumnet SAENGRUT ; Kensaku MIYAMOTO ; Rujee RATTANASATHIEN ; Tatsuya SAITO ; Yasuko ISHIMOTO ; Kanlaya CHUNJAI ; Rujirat PUDWAN ; Kawin SIRIMUENGMOON ; Hironobu KATSUYAMA
Environmental Health and Preventive Medicine 2021;26(1):97-97
BACKGROUND:
The number of adults aged over 65 years is rapidly increasing in several Southeast Asian countries. Muscle mass decreases with age, leading to sarcopenia. The primary objective of this study was to determine whether differences exist in the body composition and physical strength, according to ethnicity, among community-dwelling Japanese and Thai older adults living in Chiang Mai Province, Thailand.
METHODS:
A survey was conducted in February and March 2019. Japanese and Thai adults aged ≥ 60 years living in Chiang Mai Province were recruited through community clubs. Participants completed a self-administered questionnaire that enabled collection of data on age, sex, educational background, marital status, annual income, current medical conditions, smoking and alcohol consumption, and exercise habits. Measurements were collected on height, weight, body composition, blood pressure, hand grip, and walking speed for 6 m. Body composition was measured using a standing-posture 8-electrode multifrequency bioimpedance analysis analyzer. Hand grip of each hand was measured with the patient in the standing position using a digital grip dynamometer. Multivariable logistic regression was used to determine factors associated with skeletal muscle mass index (SMI).
RESULTS:
Of the total 119 participants, 47 were Japanese (26 men, 21 women) and 72 were Thai (16 men, 56 women). The prevalence of a low SMI was 3/26 (12%), 1/21 (5%), 6/16 (38%), and 5/56 (9%) among Japanese men, Japanese women, Thai men, and Thai women, respectively. The prevalence of low muscle strength was 2/26 (8%), 2/21 (10%), 3/16 (19%), and 13/56 (23%) among Japanese men, Japanese women, Thai men, and Thai women, respectively. There were significant differences between ethnic groups in body mass index for both sexes, percentage body fat in women, SMI in men, and average grip strength in men. Ethnic group, sex, age, and body mass index were independent predictors of SMI.
CONCLUSIONS
Ethnicity had a clinically important effect on body composition and physical strength among older Japanese and Thai adults living in a similar environment.
Aged
;
Aging/physiology*
;
Asians/ethnology*
;
Body Composition
;
Body Mass Index
;
Cross-Sectional Studies
;
Electric Impedance
;
Ethnicity
;
Female
;
Hand Strength
;
Humans
;
Independent Living
;
Male
;
Middle Aged
;
Muscle Strength
;
Thailand/ethnology*
;
Walking Speed