1.Studying the Family Diet: An Investigation into Association Between Diet, Lifestyle and Weight Status in Malaysian Families
Yang WY ; Burrows T ; MacDonald-Wicks L ; Williams LT ; Collins CE ; Chee WSS
Malaysian Journal of Nutrition 2015;21(2):139-154
Introduction: The contribution of the family environment to childhood obesity in Malaysia is not well known. This paper describes the study, methodology and results of a pilot study to assess the feasibility of conducting a study on diet and lifestyle factors among Malay primary school children and their main caregiver(s) in regard to body weight status.
Methods: The Family Diet Study used a cross-sectional design and targeted a minimum of 200 Malay families at five national primary schools in the Klang Valley, Malaysia using a multi-stage sampling method. Participants were Malay families with children aged 8 to 12 years and their main caregiver(s). Data on socio-demographic, dietary intake, parental child feeding practices, physical activity and anthropometric measures were collected predominantly at schools with follow-up 24-h dietary recalls collected by phone. Details of recruitment, inclusion criteria, assessments and statistical analyses are also discussed.
Results: Eleven families provided data by answering questionnaires, recalling diet intake and participating in anthropometric measures. The results showed overall feasibility of the study protocol but required some modifications prior to implementation of the main study. Mothers were the main parent involved in family food procurement, preparation and mealtime supervision. Snacking was not commonly reported and fruit and vegetables intakes were generally infrequent.
Conclusion: The most novel component of this study was the comprehensive collection of data from both children and their main caregiver(s) within the context of the family. Detailed information on dietary and lifestyle aspects will help to elucidate factors associated with obesity aetiology in Malay children.
2.The effect of Crocin against hypoxia damage of myocardial cell and its mechanism.
Yang WU ; Rui-Rong PAN ; Peng GENG
Chinese Journal of Applied Physiology 2010;26(4):453-457
OBJECTIVETo investigate the protective effect of Crocin against hypoxia damage of cardiac myocytes of neonatal rats and the regulation of HIF-1 and prolyhydroxylase (PHDs).
METHODSA model of CoCl2 simulated hypoxia damage was established in primary cultural myocardial cell. Expression levels of HIF-1alpha, VEGF, iNOS, as well as PHD1, 2, 3 protein in myocardial cells were detected by Western blot.
RESULTSCompared with CoCl2 group, the viability of myocardial cell was significantly increased after treated 24 h at 10(-5)mol/L Crocin (P < 0.01), HIF-1alpha, VEGF and iNOS were expressed higher than those in Crocin + CoCl2 group (P < 0.01), the expression of PHD2 was significantly increased (P < 0.01), while the expression of PHD3 was remarkably reduced in Crocin + CoCl2 Group (P < 0.01).
CONCLUSIONCrocin has better protective effect on hypoxic damage of myocardial cell. The mechanisms of protective effect of Crocin may be related to the activation of HIF-1-mediated pathway of the hypoxia response. PHDs may be involved in the pathophysiology regulated process of myocardial cells.
Animals ; Carotenoids ; pharmacology ; Cell Hypoxia ; drug effects ; Cells, Cultured ; Homeodomain Proteins ; metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit ; metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases ; metabolism ; Myocytes, Cardiac ; drug effects ; metabolism ; Nitric Oxide Synthase Type II ; metabolism ; Procollagen-Proline Dioxygenase ; metabolism ; Rats ; Rats, Sprague-Dawley ; Vascular Endothelial Growth Factor A ; metabolism
3.Effects of microRNA-1 on negatively regulating L-type calcium channel beta2 subunit gene expression during cardiac hypertrophy.
Yang WU ; Peng GENG ; Yu-Qin WANG ; Yan LIU
Chinese Journal of Applied Physiology 2012;28(4):304-308
OBJECTIVETo investigate the negative regulation of microRNA-1 (miR-1) on L-type calcium channel beta2 subunit (Cavbeta 2) during cardiomyocyte hypertrophy and its mechanism.
METHODSCardiomyocyte hypertrophy was induced by isoproterenol (ISO). The cell surface area was measured by image analysis system (HJ2000). The targets of miR-1 were predicted by online database microCosm. The 3' untranslated region sequence of Cavbeta 2 was cloned into luciferase reporter vector and then transiently transfected into HEK293 cells. The luciferase activities of samples were measured to verify the expression of luciferase reporter vector. The expression of atrial natriuretic peptide (ANP), beta-myosin heavy chain (beta-MHC), miR-1 and the Cavbeta 2 mRNA were detected by qRT-PCR. The protein expression of Cavbeta 2 was detected by Western blot. The level of miR-1 was up-regulated by miR-1 mimic transfection and the expression level of Cavbeta 2 was down-regulated by RNAi, then effects of which on cardiomyocyte hypertrophy were investigated.
RESULTS(1) The expression of miR-1 was significantly reduced in cardiomyocyte hypertrophy. Upregulating the miR-1 level could suppress the increase of cell surface area, the expression of ANP and beta-MHC mRNA (P < 0.05). (2) Cavbeta 2 was the one of potential targets of miR-1 by prediction using online database microCosm. The luciferase activities of HEK293 cells with the plasmid containing miR-1 and wide type Cavbeta 3' UTR sequence was significantly decreased when compared with that of control group (P < 0.01). Up-regulation of the miR-1 level could suppress the protein expression of Cavbeta 2. (3) The expression of Cavbeta 2 was significantly increased in cardiomyocyte hypertrophy induced by ISO. Downregulation of Cavbeta by RNAi could markedly inhibit the increase of cell surface area, the expression of ANP and beta-MHC mRNA.
CONCLUSIONCavbeta2 is one of potential targets of miR-1 by bioinformatics prediction. The experiment data confirms that Cavbeta2 is truly the target of miR-1. MiR-1 can negatively regulate the expression of Cavbeta 2, resulting in the decrease of intracellular Ca2+ content and the attenuation of cardiomyocyte hypertrophy.
Animals ; Atrial Natriuretic Factor ; metabolism ; Calcium Channels, L-Type ; genetics ; Cardiomegaly ; genetics ; Gene Expression Regulation ; HEK293 Cells ; Humans ; MicroRNAs ; genetics ; Rats ; Rats, Sprague-Dawley ; Transfection ; Ventricular Myosins ; metabolism
4.Regional glucose metabolic increases in left auditory cortex in tinnitus patients: a preliminary study with positron emission tomography
HongTian WANG ; Sichang JIANG ; WY YANG ; Dongyi HAN ; Jiahe TIAN ; Dayi YIN ; SL YAO ; MingZhe SHAO
Chinese Medical Journal 2001;114(8):848-851
Objective To investigate the relationship between tinnitus and glucose metabolism in auditory cortex and whether positron emission tomography (PET) can be an objective tool in measuring tinnitus. Methods Eleven right-handed patients with severe tinnitus and ten right-handed control subjects participated in the 18 F-FDG/PET study. Analysis with regions of interests was used to calculate asymmetry indices according to the formula: [(L-R)×100/[(L+R)÷2]]. Results Glucose metabolism in the auditory cortex of tinnitus patients was asymmetric between the left and right auditory cortices, with that of the left being much higher than that of the right. The asymmetry indices of tinnitus patients was significantly higher than that of the control group (unpaired t test, P<0.001). This revealed that the increased metabolic activity was present in the predominant left hemisphere with a significant focus on the superior and transverse temporal gyri (Brodmann areas 41 and 42, respectively corresponding to primary and secondary auditory cortex), and the results were independent of the subjective localization of the tinnitus sensation. Conclusion It is suggested that the increased metabolism in the left auditory cortex is related to the tinnitus sensation. PET is capable of providing objective evidence for tinnitus and may be used as a potential tool in measuring tinnitus.
5.A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
Yupeng YANG ; Lifeng ZHANG ; Zhenni WANG ; Bo LIANG ; Giovanni BARBERA ; Casey MOFFITT ; Yun LI ; Da-Ting LIN
Neuroscience Bulletin 2019;35(3):419-424
The complex spatial and temporal organization of neural activity in the brain is important for information-processing that guides behavior. Hence, revealing the real-time neural dynamics in freely-moving animals is fundamental to elucidating brain function. Miniature fluorescence microscopes have been developed to fulfil this requirement. With the help of GRadient INdex (GRIN) lenses that relay optical images from deep brain regions to the surface, investigators can visualize neural activity during behavioral tasks in freely-moving animals. However, the application of GRIN lenses to deep brain imaging is severely limited by their availability. Here, we describe a protocol for GRIN lens coating that ensures successful long-term intravital imaging with commercially-available GRIN lenses.
Animals
;
Biocompatible Materials
;
Brain
;
physiology
;
Hippocampus
;
cytology
;
Lenses
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Microscopy, Fluorescence
;
methods
;
Neuroimaging
;
instrumentation
;
methods
;
Neurons
;
physiology