1.Pathogenesis and Prevention Strategies of Hypercoagulable State in Malignant Tumors Based on the Theory of "Sweet-Flavored Medicinals Retaining and Restoring Body Fluid"
Yong WANG ; Zixuan CHENG ; Weiyang KONG ; Yuwei SUN ; Yunxuan SHI ; Ruyu QIN ; Zhaidong LIU
Journal of Traditional Chinese Medicine 2026;67(1):26-30
Based on the theory of "sweet-flavored medicinals retaining and restoring body fluid", this paper proposed that the core pathogenesis of hypercoagulable state in malignant tumors is qi deficiency and fluid consumption, blood stasis and vessels stagnation, which evolves dynamically according to the pattern "qi deficiency → fluid consumption → blood stasis". Accordingly, a staged treatment system is established with the general principle of "fortifying the middle jiao, restoring fluid and activating blood circulation". In the initial stage, invigorating the spleen and boosting qi to generate body fluid, targeting the onset of middle jiao deficiency and body fluid consumption; in the middle stage, nourishing yin and unblocking collaterals to facilitate body fluid circulation, addressing the disorder of body fluid transportation and collateral injury caused by internal dryness; in the late stage, consolidating yin and resolving blood stasis to retain body fluid, resolving yin impairment, fluid exhaustion, and binding of stasis and toxin. By regulating body fluid metabolism to improve the hypercoagulable state, this system is intended to provide insights for the prevention and treatment of hypercoagulable state in malignant tumors with traditional Chinese medicine.
2.Traditional Chinese Medicine Treats Esophageal Cancer via PI3K/Akt Signaling Pathway: A Review
Wei GUO ; Chen PENG ; Yikun WANG ; Zixuan YU ; Jintao LIU ; Jing DING ; Yijing LI ; Hongxin SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):302-311
Esophageal cancer (EC) is a highly prevalent malignant tumor in China. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, as one of the key oncogenic pathways, can promote the cell cycle progression, proliferation, migration, and invasion, induce chemoresistance, and inhibit apoptosis and autophagy of EC cells. Traditional Chinese medicine (TCM), with the advantages of targeting multiple points with multiple components to delay cancer progression, can target the PI3K/Akt signaling pathway for EC treatment. This article preliminarily discusses the molecular mechanism and role of the PI3K/Akt signaling pathway in EC and elaborates on the specific targets and efficacy of TCM in treating EC through intervention in the PI3K/Akt signaling pathway in the past five years. TCM materials and extracts inhibiting the PI3K/Akt signaling pathway in EC include Borneolum, spore powder of Ganoderma lucidum without spore coat, extract of Celastrus orbiculatus, root extract of Taraxacum, and Bruceae Fructus oil emulsion. TCM active ingredients exerting the effect include flavonoids, terpenoids, saponins, phenols, polysaccharides, alkaloids, and other compounds. TCM compound prescriptions with such effect include Qige San, Huqi San, Xuanfu Daizhetang, Tongyoutang and its decomposed prescriptions, Liujunzi Tang, and Xishenzhi Formula. In addition, TCM injections such as Compound Kushen Injection and Kang'ai injection also inhibit the PI3K/Akt signaling pathway in EC. This paper summarizes the role of the PI3K/Akt signaling pathway in EC and the TCM interventions, aiming to provide reference for the research and clinical application of new drugs for EC.
3.Mechanism of Dangui Shaoyaosan in Alleviating Inflammatory Responses in Diabetic Kidney Disease by Modulating Macrophage Polarization in Kidneys of db/db Mice
Luyu HOU ; Linlin ZHENG ; Wenjing SHI ; Zixuan WANG ; Shilong GUO ; Zhe LYU ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):1-10
ObjectiveTo observe the effects of Danggui Shaoyaosan on macrophage polarization and renal inflammation in db/db mice with diabetic kidney disease (DKD), and to explore its renal protective effects and underlying mechanisms. MethodsEight db/m mice were assigned to the normal group, and forty db/db mice were randomly divided into a model group, low-, medium-, and high-dose Danggui Shaoyaosan groups (8.39, 16.77, 33.54 g·kg-1), and an irbesartan group (0.025 g·kg-1). All mice were administered treatment by gavage for 12 consecutive weeks. General conditions of the mice were observed during the intervention. At the end of the 12-week intervention, 24-h urine samples were collected using metabolic cages, after which the mice were anesthetized for sample collection. Blood was collected by enucleation and centrifuged to obtain serum for the determination of glycated serum protein (GSP), serum creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), and triglycerides (TG). The urinary albumin-to-creatinine ratio (UACR) was measured. Renal pathological changes were observed using hematoxylin-eosin (HE) staining, periodic acid-Schiff (PAS) staining, and Masson staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and monocyte chemoattractant protein-1 (MCP-1) levels. Immunofluorescence (IF) was performed to detect F4/80 expression in renal tissue, and immunohistochemistry (IHC) was used to assess CD206 expression. Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA expression of TNF-α, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1). Western blot analysis was used to detect the protein expression of iNOS, Arg-1, CD86, and CD206 in renal tissue. ResultsCompared with the normal group, the model group showed increased levels of GSP, UACR, SCr, BUN, TC, and TG, elevated levels of the inflammatory factor TNF-α and the chemokine MCP-1, and decreased IL-10 levels (P<0.01). Pathological examination revealed glomerular hypertrophy, mesangial cell proliferation with marked mesangial expansion, inflammatory cell infiltration, vacuolar degeneration of renal tubular epithelial cells, prominent glycogen deposition, and increased collagen fiber deposition. In addition, relative F4/80 fluorescence intensity was enhanced, CD206 expression in the glomeruli and renal interstitium was reduced, and TNF-α and iNOS mRNA expression was increased. IL-10 and Arg-1 mRNA expression was decreased, iNOS and CD86 protein expression was increased, and Arg-1 and CD206 protein expression was decreased (P<0.05, P<0.01). Compared with the model group, the Danggui Shaoyaosan groups and the irbesartan group showed decreased levels of GSP, UACR, SCr, BUN, TC, and TG, reduced serum TNF-α and MCP-1 levels, and increased IL-10 levels. Renal pathological damage was improved to varying degrees. Relative F4/80 fluorescence intensity was reduced, CD206 expression in the glomeruli and renal interstitium was increased, and TNF-α and iNOS mRNA expression was decreased. IL-10 and Arg-1 mRNA expression was increased, iNOS and CD86 protein expression was reduced, and Arg-1 and CD206 protein expression was increased (P<0.05, P<0.01). ConclusionDanggui Shaoyaosan can improve renal function and alleviate renal pathological damage in db/db mice. Its mechanism may be related to inhibiting M1 pro-inflammatory macrophage polarization, promoting M2 anti-inflammatory macrophage polarization, reducing inflammatory responses, delaying the progression of renal fibrosis, improving renal pathological injury, and thereby exerting renal protective effects.
4.Mechanism of Danggui Shaoyaosan in Improving Glomerulosclerosis in db/db Mice via SIRT1/HIF-1α/VLDLr Signaling Pathway
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):11-18
ObjectiveTo investigate the potential mechanism of Danggui Shaoyaosan (DSS) in ameliorating renal injury in db/db mice. MethodsThirty 8-week-old specific pathogen-free (SPF)-grade male db/db mice and six db/m mice were acclimated for one week. Urinary microalbumin and blood glucose levels were measured weekly in both db/db and db/m mice. Successful modeling was determined by significantly higher microalbuminuria in db/db mice compared to db/m mice and a fasting blood glucose ≥16.7 mmol·L-1. The 30 db/db mice were randomly divided into five groups: the model group, the irbesartan (IBN) group, and three DSS dose groups (low-, medium-, and high-dose DSS groups, administered at 16.77, 33.54, 67.08 g·kg-1·d-1, respectively). Additionally, the six db/m mice served as the normal control group. The IBN group received irbesartan at 0.025 g·kg-1·d-1 by gavage, while the three DSS groups received DSS at 16.77, 33.54, and 67.08 g·kg-1·d-1 by gavage, respectively. The normal and model groups were administered with an equivalent volume of normal saline by gavage. All interventions lasted for 8 consecutive weeks. After intervention, serum creatinine (SCr), blood urea nitrogen (BUN), urinary total protein (UTP), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were measured to evaluate the therapeutic efficacy of the treatments. Renal histopathological changes were observed with hematoxylin-eosin (HE) staining. Western blot was used to detect the protein expression of silencing information regulator 1 (SIRT1), hypoxia-inducible factor-1α (HIF-1α), very low-density lipoprotein receptor (VLDLr), and cluster of differentiation 31 (CD31). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA levels of HIF-1α and VLDLr. Immunohistochemistry was used to observe the expression and distribution of HIF-1α and Caspase-3. ResultsCompared to the normal group, the model group showed significantly increased SCr, BUN, UTP, TG, and LDL-C. HE staining revealed glomerulosclerosis, mesangial matrix hyperplasia, capillary loop distortion and thickening, with extensive inflammatory cell infiltration. Protein expression of SIRT1 and CD31 significantly decreased (P<0.05), while HIF-1α and VLDLr protein and mRNA levels increased (P<0.05). Immunohistochemistry showed increased expression of HIF-1α and Caspase-3 (P<0.05), indicating hypoxia and apoptosis in renal cells. In all treatment groups, SCr, BUN, TG, and LDL-C were significantly reduced compared to the model group (P<0.05), and UTP was significantly improved in the medium-dose DSS group (P<0.05). Renal tissue structure and morphology were improved, inflammatory cells were reduced, and no vascular hyaline degeneration was observed. SIRT1 and CD31 protein expression was elevated to varying degrees compared to the model group (P<0.05), while HIF-1α and VLDLr protein and mRNA levels decreased (P<0.05). Immunohistochemistry showed reduced expression of HIF-1α and Caspase-3 in all treatment groups (P<0.05), with the most significant improvement observed in the IBN group and medium-dose DSS group (P<0.05). ConclusionDSS can effectively ameliorate glomerulosclerosis and lipid deposition in db/db mice, and its mechanism may involve the SIRT1/HIF-1α/VLDLr signaling pathway.
5.Mechanism of Danggui Shaoyaosan in Improving Inflammatory Response in Mice with Diabetic Kidney Disease Based on TLR4/p65/NLRP3 Signaling Pathway
Shilong GUO ; Ruijia LI ; Zixuan WANG ; Xinai WANG ; Luyu HOU ; Wenjing SHI ; Mengyuan TIAN ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):19-27
ObjectiveTo investigate the effect of Danggui Shaoyaosan on the expression of Toll-like receptor 4/nuclear factor-kappa B p65/NOD-like receptor protein 3 (TLR4/NF-κB p65/NLRP3) signaling pathway in the renal tissues of db/db mice with spontaneous diabetes, and to explore the potential mechanism by which Danggui Shaoyaosan alleviates inflammation in diabetic kidney disease (DKD). MethodsThirty db/db mice were divided into five groups: A model group, Danggui Shaoyaosan low- (16.77 g·kg-1·d-1), medium- (33.54 g·kg-1·d-1), and high-dose (67.08 g·kg-1·d-1) intervention groups, as well as an irbesartan group (0.025 g·kg-1·d-1) by the random number table method, with 6 mice in each group. Additionally, 6 db/m mice were assigned to the normal group. After 8 weeks of intervention, the following parameters were determined by corresponding methods: body weight, fasting blood glucose (FBG), 24-hour urinary protein (24 h-UTP), and serum creatinine (SCr) levels, renal histopathological analysis by hematoxylin-eosin (HE) staining, Masson staining, and periodic acid-Schiff (PAS) staining, the protein and mRNA expression levels of TLR4, NF-κB p65, NLRP3, tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-18 (IL-18) by Western blot and Real-time quantitative polymerase chain reaction (Real-time PCR), as well as TLR4, NF-κB p65, and NLRP3 protein expression in renal tissues by immunohistochemistry (IHC). ResultsCompared with the normal group, the model group exhibited increased body weight, FBG, 24 h-UTP, and SCr levels (P<0.05); disordered renal structure, thickened basement membrane, and interstitial inflammatory cell infiltration, elevated TLR4, NF-κB p65, NLRP3, TNF-α, IL-1β, IL-6, and IL-18 expression; as well as decreased IL-10 expression (P<0.05). Compared with the model group, these pathological changes and biochemical abnormalities were reversed in the medicine intervention groups to varying degrees (P<0.05). ConclusionDanggui Shaoyaosan may delay DKD progression by alleviating renal inflammatory response and reducing urinary protein excretion via modulating the TLR4/NF-κB p65/NLRP3 signaling pathway.
6.Protective Effect and Potential Mechanism of Danggui Shaoyaosan on Diabetic Kidney Disease in db/db Mice Based on Endoplasmic Reticulum Stress in Glomerular Endothelial Cells
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Sen YANG ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):28-35
ObjectiveTo investigate the therapeutic efficacy of Danggui Shaoyaosan (DSS) on renal injury in db/db mice and its impact on endoplasmic reticulum stress (ERS) in renal tissues. MethodsThirty 8-week-old male db/db mice and six db/m mice were acclimated for one week, after which urinary microalbumin and blood glucose levels were monitored to establish a diabetic kidney disease (DKD) model. The model mice were randomly divided into a model group, an irbesartan group, and three DSS treatment groups with different doses (16.77, 33.54, and 67.08 g·kg-1·d-1). A normal group was set as control. Each group was intragastrically administered with the corresponding drugs or saline for 8 weeks. After the intervention, general conditions were observed. Serum cystatin C (Cys-C), 24-hour urinary total protein (24 h-UTP), 24-hour urinary microalbumin (24 h-UMA), urinary creatinine (Ucr), and urea nitrogen (UUN) were measured. Transmission electron microscopy (TEM) was used to observe glomerular basement membrane (GBM) and ultrastructural changes of the endoplasmic reticulum (ER) in glomerular endothelial cells. Western blot, real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and immunohistochemistry were used to analyze renal tissue structure and the expression of GRP78, CHOP, and related markers. ResultsCompared with the normal group, the mice in the model group showed curled posture, sluggish response, poor fur condition, increased levels of Cys-C, 24 h-UTP, 24 h-UMA, and UUN (P<0.05), while Ucr decreased (P<0.05). The GBM was significantly thickened, with podocyte and foot process fusion. The protein expressions of GRP78, CHOP, and ATF6 were significantly upregulated (P<0.05), the mRNA levels of GRP78 and CHOP increased (P<0.05), and immunohistochemistry showed an enhanced GRP78 signal (P<0.05). After treatment, the mice exhibited improved behavior, normalized GBM and podocyte structure, improved ER morphology and markedly better biochemical indicators. Western blot, Real-time PCR, and immunohistochemistry indicated that the ERS-related markers were downregulated in the DSS treatment groups (P<0.05), suggesting alleviated ERS and improved renal function. ConclusionDSS can effectively ameliorate renal pathological damage in db/db mice, possibly by regulating ERS in glomerular endothelial cells, although the underlying signaling mechanisms require further investigation.
7.DC-CIK cell as an adjuvant to cetuximab combined with CAPEOX chemotherapy regimen for the treatment of 52 cases of advanced colorectal cancer
WANG Zixuan ; JIANG Longwei ; CHEN Yitian ; JIA Shaochang
Chinese Journal of Cancer Biotherapy 2025;32(4):413-417
[摘 要] 目的:评价DC-CIK细胞免疫治疗辅助西妥昔单抗联合CAPEOX(奥沙利铂 + 卡培他滨)化疗方案治疗全RAS基因野生型、BRAF基因野生型晚期结直肠癌(CRC)的临床疗效与安全性。方法:回顾性分析2020年12月至2023年10月期间东部战区总医院肿瘤科收治的52例晚期CRC的临床资料,其中对照组与观察组分别为26例。观察组在对照组化疗基础上给予DC-CIK细胞治疗,统计患者的临床疗效和不良反应,分析患者的近期疗效、生活质量评分、化疗不良反应发生情况,以及治疗前后肿瘤标志物和免疫指标的变化。结果:与对照组相比,观察组晚期CRC患者的疾病控制率(DCR)、生活质量均明显提高(均P < 0.05),化疗后腹泻或便秘的发生率、肿瘤标志物CA72-4均明显降低(均P < 0.05),NK细胞计数明显上升(P < 0.05)。结论:在晚期CRC患者行DC-CIK细胞免疫治疗辅助西妥昔单抗联合CAPEOX化疗方案治疗安全可行,能够显著提高DCR,为患者带来显著的临床获益。
8.Effect of Different Time Interventions of Yangxin Tongmai Formula (养心通脉方) on DNA Methylation in Rat Models of Premature Coronary Heart Disease with Blood Stasis Syndrome
Xing CHEN ; Zixuan YU ; Shumeng ZHANG ; Yanjuan LIU ; Shuangyou DENG ; Ying WANG ; Lingli CHEN ; Jie LI
Journal of Traditional Chinese Medicine 2025;66(11):1165-1173
ObjectiveTo observe the effect of Yangxin Tongmai Formula (养心通脉方) by midnight-noon ebb-flow administration method for rat models of premature coronary heart disease (PCHD) with blood stasis syndrome, and to explore the possible mechanism of action from the perspective of DNA methylation differential gene expression. MethodsThere were 3 SD rats in each of the blank group, model group and Yangxin Tongmai Formula group, and the rats in the model group and Yangxin Tongmai Formula group were fed with high-fat chow plus vitamin D3 by gavage plus isoproterenol hydrochloride by subcutaneous injection to construct rat models of PCHD with blood stasis syndrome. After successful modelling, rats in Yangxin Tongmai Formula group were gavaged with 18 g/(kg‧d) of Yangxin Tongmai Formula, and rats in blank group and the model group were gavaged with 4 ml/(kg‧d) of 0.9% NaCl solution, and serum samples of rats in each group were collected for DNA methylation sequencing after 3 weeks to screen for the relevant DNA methylation differentiation genes. In addition, rats with successful modelling of PCHD with blood stasis were randomly divided into model group, Yangxin Tongmai Formula with midnight-noon ebb-flow administration method group [18 g/(kg‧d) of Yangxin Tongmai Formula was gavaged twice in the heart channel period (12:00) and pericardium channel period (20:00)], the Yangxin Tongmai Formula control group [18 g/(kg‧d) of Yangxin Tongmai Formula was gavaged twice at 8:00 and 18:00] and the Atorvastatin Calcium group [atorvastatin calcium tablets solution 1.8 mg/(kg‧d) at the same intervention time as that in Yangxin Tongmai Formula control group], and set up a blank group of 8 rats in each group. The model group and blank group were gavaged with 0.9% NaCl solution 4 ml/(kg‧d) for the same time as the Yangxin Tongmai Formula control group. After 3 weeks of gavage, the blood lipids [including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL)] levels of rats in each group were detected; the HE staining of myocardial tissues and thoracic aorta was used to observe the pathomorphological changes; the levels of serum inflammation indexes [tumour necrosis factor alpha (TNF-alpha), lipopolysaccharide (LPS), and interleukin 10 (IL-10)] were detected; immunoprecipitation-realtime fluorescence quantitative PCR was used to detect the relative expression of cardiac tissue screening differential genes. ResultsThe genes screened for differentially methylated regions were calmodulin 2 (Calm2), calcium voltage-gated channel subunit α1s (Cacna1s), and phospholipase Cβ1 (Plcb1). Compared with the blank group, rats in the model group showed elevated levels of TC, LDL, TNF-α and LPS, and decreased levels of HDL and IL-10 (P<0.05 or P<0.01); HE staining showed obvious swelling of myocardial fibres, accompanied by a large number of inflammatory cell infiltration, and thickening of the inner wall of the aortic vessels with internal wall damage, which was visible as a large number of lipid cholesterol crystals and obvious inflammatory cell infiltration. Compared with the model group, the TC, LDL, TNF-α and LPS contents of rats in the Yangxin Tongmai Formula with midnight-noon ebb-flow administration method group, the Yangxin Tongmai Formula control group, and the atorvastatin calcium group all reduced, and the contents of HDL and IL-10 all elevated (P<0.05), with the improvement of myocardial tissue damage and the reduction of inflammatory infiltration, and the improvement of the damage of the inner lining of the thoracic aorta and the reduction of lipid infiltration. Compared with Yangxin Tongmai Formula control group, LDL, TNF-α and LPS contents reduced, and IL-10 contents increased in the midnight-noon ebb-flow administration method group (P<0.05). Compared with the model group, the relative expression of Calm2 and Plcb1 genes decreased and the relative expression of Cacna1s gene increased in Yangxin Tongmai Formula control group and the midnight-noon ebb-flow administration method group (P<0.05); compared with the Yangxin Tongmai Formula control group, the relative expression of Calm2 gene decreased and the relative expression of Cacna1s gene increased in the midnight-noon ebb-flow administration method group (P<0.05). ConclusionThe intervention of Yangxin Tongmai Formula in the heart channel period (12:00) and pericardium channel period (20:00) was more effective in improving the blood lipid level, inhibiting inflammation, and improving myocardial tissue damage in rats of PCHD with blood stasis syndrome, and Calm2 and Cacna1s genes may be the key targets of Yangxin Tongmai Formula in intervening the blood stasis syndrome of PCHD.
9.Professor BU He's Experience in Integrative Internal and External Treatment of Pediatric Functional Constipation
Zixuan WANG ; Xiaoyi GUO ; Yuting ZHANG
Journal of Traditional Chinese Medicine 2025;66(15):1534-1537
This paper summarized Professor BU He's clinical experience in the integrative internal and external treatment of pediatric functional constipation. He believes that dysfunction of the spleen in transportation leads to impaired function of the sanjiao (三焦) and intestinal obstruction, which constitutes the core pathogenesis of pediatric functional constipation. The treatment emphasizes regulating the spleen and harmonizing the pivot, as well as unblocking the bowel and eliminating stagnation. An integrated approach combining internal and external therapies is advocated. Internally, Chinese herbal medicine, primarily Modified Sijunzi Decoction and Shaoyao Gancao Decoction (四君子汤合芍药甘草汤加减) is used to regulate the internal organs. Externally, pediatric tuina and moxibustion on qi interlocking are employed. Together, these methods fortify the spleen and facilitate transportation, restoring the smooth function of the sanjiao pivot, and ensuring intestinal patency, thereby relieving constipation.
10.Related factors and prognostic impact of cardiac valve calcification in maintenance hemodialysis patients
Chengjun WANG ; Xiaorong BAO ; Zixuan QIAO ; Miao MIAO ; Wei YE ; Lizhen WANG ; Zhengjia HE ; Jiao WANG
Chinese Journal of Clinical Medicine 2025;32(4):568-577
Objective To explore risk factors for cardiac valve calcification (CVC) in maintenance hemodialysis (MHD) patients and evaluate its impact on cardiovascular events and mortality. Methods Retrospective selection of 223 patients with MHD admitted to the Department of Nephrology of Jinshan Hospital, Fudan University from June 30, 2019 to June 30, 2024, and enrollment completed within one week of June 30, 2019. Patients were divided into CVC and non-CVC groups. Baseline data and 5-year follow-up data were collected. The binary logistic regression analysis was performed to explore the risk factors for CVC. Kaplan-Meier survival curve was used to analyze the survival rate of patients. Cox proportional hazard regression model was applied to evaluate the impact of CVC on the survival rates of MHD patients. Results Totally, 223 MHD patients with an average age of (58.4±13.5) years and an average dialysis duration of (64.0±55.4) months were involved. Among them, 136(61.0%) were males, 117(52.5%) were complicated with CVC. Age, dialysis duration, diabetic kidney disease (DKD), the serum corrected total calcium and phosphate, intact parathyroid hormone (iPTH), high-sensitive C-reactive protein (hsCRP), and homocysteine (Hcy) were independent related factors for CVC (P<0.05). Both all-cause mortality (46.6% vs 28.7%) and cardiovascular mortality (33.3% vs 16.0%) were significantly higher in the CVC group than those in the non-CVC group (P<0.01). Conclusions Age, dialysis duration, the primary disease, calcium and phosphate, and inflammation- and nutrition-related serum indicators are associated with CVC in MHD patients. CVC significantly increases mortality risk of MHD patients.

Result Analysis
Print
Save
E-mail