1.Human Cortical Organoids with a Novel SCN2A Variant Exhibit Hyperexcitability and Differential Responses to Anti-Seizure Compounds.
Yuling YANG ; Yang CAI ; Shuyang WANG ; Xiaoling WU ; Zhicheng SHAO ; Xin WANG ; Jing DING
Neuroscience Bulletin 2025;41(11):2010-2024
Mutations in ion channel genes have long been implicated in a spectrum of epilepsy syndromes. However, therapeutic decision-making is relatively complex for epilepsies associated with channelopathy. Therefore, in the present study, we used a patient-derived organoid model with a novel SCN2A mutation (p.E512K) to investigate the potential of utilizing such a model as a platform for preclinical testing of anti-seizure compounds. The electrophysiological properties of the variant Nav1.2 exhibited gain-of-function effects with increased current amplitude and premature activation. Immunofluorescence staining of patient-derived cortical organoids (COs) displayed normal neurodevelopment. Multielectrode array (MEA) recordings of patient-derived COs showed hyperexcitability with increased spiking and remarkable network bursts. Moreover, the application of patient-derived COs for preclinical drug testing using the MEA showed that they exhibit differential responses to various anti-seizure drugs and respond well to carbamazepine. Our results demonstrate that the individualized organoids have the potential to serve as a platform for preclinical pharmacological assessment.
Organoids/physiology*
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Humans
;
Anticonvulsants/pharmacology*
;
Epilepsy/drug therapy*
;
Mutation
;
Cerebral Cortex/drug effects*
;
Action Potentials/drug effects*
;
Carbamazepine/pharmacology*
2.Genetic analysis of a case of mild epilepsy due to variant of SCN9A gene.
Xunqiang YIN ; Yuping NIU ; Yang ZOU ; Yuan GAO
Chinese Journal of Medical Genetics 2023;40(3):344-348
OBJECTIVE:
To explore the genetic etiology of a patient with epilepsy and provide genetic counseling.
METHODS:
A patient who had visited the Center for Reproductive Medicine of Shandong University on November 11, 2020 was selected as the study subject, and her clinic information was collected. Candidate variant was identified through whole exome sequencing (WES), and Sanger sequencing was used for validation. Possible transcriptional changes caused by the variant was detected by reverse transcription-PCR and Sanger sequencing.
RESULTS:
The patient was a 35-year-old female with no fever at the onset, loss of consciousness and abnormal firing in the temporal lobe, manifesting predominantly as convulsions and fainting. WES revealed that she had harbored a heterozygous c.2841+5G>A variant of the SCN9A gene, which was verified by Sanger sequencing. cDNA sequencing confirmed that 154 bases were inserted between exons 16 and 17 of the SCN9A gene, which probably produced a truncated protein and affected the normal function of the SCN9A protein. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.2841+5G>A variant was classified as likely pathogenic (PVS1_Strong+PM2_Supporting).
CONCLUSION
The c.2841+5G>A variant of the SCN9A gene probably underlay the epilepsy in this patient. Above finding has enriched the variant spectrum of the SCN9A gene and provided a basis for the prenatal diagnosis and preimplantation genetic testing for this patient.
Humans
;
Female
;
Pregnancy
;
Adult
;
Epilepsy/genetics*
;
Seizures
;
Exons
;
DNA, Complementary
;
Genetic Counseling
;
NAV1.7 Voltage-Gated Sodium Channel
4.Novel compound heterozygous SCN9A variations causing congenital insensitivity to pain in a patient.
Ying BAI ; Yue SUN ; Jing WU ; Ning LIU ; Zhihui JIAO ; Qianqian LI ; Kaihui ZHAO ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(4):392-396
OBJECTIVE:
To explore the genetic basis for a child featuring congenital insensitivity to pain (CIP).
METHODS:
Targeted capture and next generation sequencing (NGS) was carried out for the proband. Suspected pathogenic variants were confirmed by Sanger sequencing of the proband and his parents.
RESULTS:
The proband was found to harbor compound heterozygous variants of SCN9A gene, namely c.1598delA (p.N533Ifs*31) and c.295_296delCGinsAT (p.R99I), which were respectively inherited from his father and mother. Both variants were predicted to be pathogenic, and neither was reported previously.
CONCLUSION
The compound heterozygous variants of the SCN9A gene probably underlay the CIP in this child. Above finding has enabled genetic counseling for this family.
Channelopathies
;
Child
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mutation
;
NAV1.7 Voltage-Gated Sodium Channel/genetics*
;
Pain Insensitivity, Congenital/genetics*
5.Association of SCN2A, ABCB1 and CYP2C19*3 with genetic susceptibility to major depressive disorder.
Ting ZHANG ; Qing Min RAO ; Yong Yin HE ; Jin Tai CAI ; Hai Ying LIU ; Yu Long LIN
Chinese Journal of Preventive Medicine 2022;56(3):287-294
Objective: Due to genetic factors might increase the risk of depression, this study investigated the genetic risk factors of depression in Chinese Han population by analyzing the association between 13 candidate genes and depression. Methods: 439 depression patients and 464 healthy controls were included in this case-control study. Case group consisted of 158 males and 281 females, aged (29.84±14.91) years old, who were hospitalized in three departments of the affiliated Brain Hospital of Guangzhou Medical University including Affective Disorders Department, Adult Psychiatry Department and Geriatrics Department, from February 2020 to September 2021. The control group consisted of 196 males and 268 females, aged (30.65±12.63) years old. 20 loci of 13 candidate genes in all subjects were detected by MALDI-TOF mass spectrometry. Age difference was compared using the student's t-test, the distributions of gender and genotype were analyzed with Pearson's Chi-square test. The analyses of Hardy-Weinberg equilibrium, allele frequency and the genetic association of depression were conducted using the corresponding programs in PLINK software. Results: PLINK analysis showed that SCN2A rs17183814, ABCB1 rs1045642, CYP2C19*3 rs4986893 and NAT2*5A rs1799929 were associated with depression before Bonferroni correction (χ2=10.340, P=0.001; χ2=11.010, P=0.001; χ2=9.781, P=0.002; χ2=4.481, P=0.034). The frequencies of minor alleles of above loci in the control group were 12.07%, 43.64%, 2.59% and 3.88%, respectively. The frequencies of minor alleles of loci mentioned above in the case group were 17.43%, 35.99%, 5.47% and 6.04%, respectively. OR values were 1.538, 0.726, 2.178 and 1.592, respectively. After 1 000 000 permutation tests using Max(T) permutation procedure, the four loci were still statistically significant, the empirical P-value were 0.002, 0.001, 0.003 and 0.042, respectively. However, only three loci including SCN2A rs17183814, ABCB1 rs1045642 and CYP2C19 rs4986893 had statistical significance after Bonferroni correction, the adjusted P-value were 0.026, 0.018 and 0.035, respectively. Conclusion: SCN2A rs17183814, ABCB1 rs1045642 and CYP2C19*3 rs4986893 were associated with depression's susceptibility in Chinese Han population. The A allele of SCN2A rs17183814 and CYP2C19*3 rs4986893 were risk factors for depression, while the T allele of ABCB1 rs1045642 was a protective factor for depression.
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Adolescent
;
Adult
;
Alleles
;
Arylamine N-Acetyltransferase/genetics*
;
Case-Control Studies
;
Clopidogrel
;
Cytochrome P-450 CYP2C19/genetics*
;
Depressive Disorder, Major/genetics*
;
Female
;
Gene Frequency
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Male
;
NAV1.2 Voltage-Gated Sodium Channel
;
Polymorphism, Single Nucleotide
;
Young Adult
6.Clinical and genetic spectrum of SCN2A gene associated epilepsy and episodic ataxia.
Jing GUAN ; Kai Xian DU ; Yan DONG ; Lin LI ; Pan Pan SONG ; Huan GONG ; Xiao Li ZHANG ; Tian Ming JIA
Chinese Journal of Pediatrics 2022;60(1):51-55
Objective: To explore the clinical manifestations and genetic characteristics of patients with epilepsy and episodic ataxia caused by SCN2A gene variation. Methods: The clinical data of seizure manifestation, imaging examination and genetic results of 5 patients with epilepsy and (or) episodic ataxia because of SCN2A gene variation admitted to the Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University from July 2017 to January 2021 were analyzed retrospectively. Results: Among 5 patients, 4 were female and 1 was male. The onset age of epilepsy ranged from 4 days to 8 months. There were 2 cases of benign neonatal or infantile epilepsy and 3 cases of epileptic encephalopathy, in whom 1 case had development retardation,1 case transformed from West syndrome to infantile spasm and another one transformed from infantile spasm to Lennox-Gastaut syndrome. One case of benign neonatal-infantile epilepsy was characterized by neonatal onset seizures and episodic ataxia developed at the age of 78 months. Electroencephalograms at first visit of 5 cases showed that 2 cases were normal, 1 case had focal epileptic discharge, and 2 cases had multi-focal abnormal discharge with peak arrhythmia. The brain magnetic resonance imaging (MRI) of 3 cases were nomal, 1 case was abnormal (brain atrophy with decreased white matter) and the results of 1 case was unknown. The follow-up time ranged from 17 months to 89 months. Four cases of epilepsy were controlled and 1 case died at 2 years of age. Two cases had normal intelligence and motor development, 2 had moderate to severe intelligence retardation and motor critical state, and 1 had moderate to severe intelligence and motor development retardation. SCN2A gene variations were identified in all cases. There were 4 missense variations and 1 frameshift variation. Three variations had not been reported so far, including c.4906A>G,c.3643G>T,c.638delT. Conclusions: Variations in SCN2A gene can cause benign neonatal or infantile epilepsy and epileptic encephalopathy. Some children develop episodic ataxia with growing age. The variation of SCN2A gene is mainly missense variation.
Ataxia/genetics*
;
Child
;
Electroencephalography
;
Epilepsy/genetics*
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Mutation
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Retrospective Studies
;
Spasms, Infantile/genetics*
7.Genetics and clinical phenotypes of epilepsy associated with chromosome 2q24.3 microdeletion.
Na ZHAO ; Miao Miao CHENG ; Ying YANG ; Xue Yang NIU ; Yi CHEN ; Xiao Ling YANG ; Yue Hua ZHANG
Chinese Journal of Pediatrics 2022;60(11):1140-1146
Objective: To summarize the genetics and clinical phenotypes of epilepsy children with 2q24.3 microdeletion. Methods: All the patients with 2q24.3 microdeletion were retrospectively collected at the Pediatric Department of Peking University First Hospital from March 2017 to July 2022. The features of clinical manifestations, electroencephalogram (EEG), and neuroimaging were analyzed. Results: There were 13 patients with 2q24.3 microdeletion were included. All 13 patients had de novo copy number variation (CNV) with a deletion size ranged 0.18-7.31 Mb. The main pathogenic genes in the region were SCN3A, SCN2A, TTC21B, SCN1A and SCN9A genes. Among the 13 patients, 7 were boys, and 6 were girls. The onset age of epilepsy was 3.3(2.5, 6.0) months. Multiple seizure types were observed, including focal seizures in 13 patients, generalized tonic-clonic seizures (GTCS) in 6 patients, myoclonic seizures in 3 patients, epileptic spasm in 2 patients, and tonic seizures in 2 patients. Seizures were fever sensitivity in 9 patients. Status epilepticus was observed in 6 patients. One case had normal mental motor development and 12 cases had different degrees of developmental delay. Six patients had craniofacial abnormality, 1 had six-finger deformity of the right thumb, and 1 had multiple system abnormalities. EEG showed focal discharge in 3 cases, multifocal discharges in 5 cases, multifocal and generalized discharges in 1 case. Brain magnetic resonance imaging (MRI) showed enlargement of subarachnoid spaces in the frontal and temporal region in 4 patients, enlargement of lateral ventricle in 4 patients and delayed myelination of white matter in 1 patient. Dravet syndrome was diagnosed in 5 cases. The age at the last follow-up were 2.5(1.4,5.5) years, 1 patient was seizure free longer than 1 year, and 12 patients still had seizures. Conclusions: The epilepsy associated with 2q24.3 microdeletion is mainly induced by the deletion of SCN3A, SCN2A and SCN1A genes. The seizure onset age of 2q24.3 microdeletion related epilepsy was in infancy. Multiple seizure types are observed and the common seizure types include focal seizures and GTCS. Most patients have fever sensitivity and status epilepticus. Most patients have developmental delay. The phenotype of patients with deletion of SCN3A and SCN2A gene is more severe than that of patients with deletion of SCN1A gene only.
Humans
;
Abnormalities, Multiple
;
Chromosomes
;
DNA Copy Number Variations
;
Epilepsies, Myoclonic
;
Epilepsy
;
Fever
;
NAV1.7 Voltage-Gated Sodium Channel
;
Phenotype
;
Retrospective Studies
;
Seizures
;
Status Epilepticus
;
Chromosomes, Human, Pair 2
8.Anti-epileptic/pro-epileptic effects of sodium channel modulators from Buthus martensii Karsch.
Qian XIAO ; Zhi-Ping ZHANG ; Yang-Bo HOU ; Dong-Xiao QU ; Le-Le TANG ; Li-Ji CHEN ; Guo-Yi LI ; Yong-Hua JI ; Jie TAO ; Yu-Dan ZHU
Acta Physiologica Sinica 2022;74(4):621-632
The East Asian scorpion Buthus martensii Karsch (BmK) is one of the classical traditional Chinese medicines for treating epilepsy for over a thousand years. Neurotoxins purified from BmK venom are considered as the main active ingredients, acting on membrane ion channels. Voltage-gated sodium channels (VGSCs) play a crucial role in the occurrence of epilepsy, which make them become important drug targets for epilepsy. Long chain toxins of BmK, composed of 60-70 amino acid residues, could specifically recognize VGSCs. Among them, α-like neurotoxins, binding to the receptor site-3 of VGSC, induce epilepsy in rodents and can be used to establish seizure models. The β or β-like neurotoxins, binding to the receptor site-4 of VGSC, have significant anticonvulsant effects in epileptic models. This review aims to illuminate the anticonvulsant/convulsant effects of BmK polypeptides by acting on VGSCs, and provide potential frameworks for the anti-epileptic drug-design.
Animals
;
Anticonvulsants/therapeutic use*
;
Neurotoxins/pharmacology*
;
Scorpion Venoms/pharmacology*
;
Scorpions/chemistry*
;
Voltage-Gated Sodium Channels
10.Autism spectrum disorder/development delay in siblings with SCN2A mutations caused by germline mosaicism.
Pingping ZHANG ; Zhijie GAO ; Jia JIA ; Qian CHEN
Chinese Journal of Medical Genetics 2021;38(11):1097-1100
OBJECTIVE:
To report on a family which has two siblings with SCN2A mutation caused by germline mosaicism suffering from autism spectrum disorder/development delay (ASD/DD).
METHODS:
Clinical data was collected for the proband and his parents. Next generation sequencing (NGS) was carried out on the proband and his parents. Suspected mutations were verified by Sanger sequencing of the proband, his parents and brother. To detect whether there is a low proportion of somatic mosaicism in the parents, a droplet digital PCR was conducted. The result of ddPCR showed that the father was germline mosaicism (0.233%).
RESULTS:
NGS has identified a de novo splicing mutation of the SCN2A gene, c.605+1G>A, in the proband and his brother. Combined with its clinical phenotype and inheritance pattern, SCN2A was judged to be the pathogenic gene. Above findings strongly suggested parental germline mosaicism.
CONCLUSION
ASD/DD in siblings with SCN2A mutations caused by germline mosaicism. Paternal mosaicism should be considered as one of the important inheritance patterns for counseling parents with a child carrying SCN2A mutation. The ddPCR can help to reveal very low proportion of germline mosaicism.
Autism Spectrum Disorder
;
Germ Cells
;
Humans
;
Male
;
Mosaicism
;
Mutation
;
NAV1.2 Voltage-Gated Sodium Channel/genetics*
;
Siblings

Result Analysis
Print
Save
E-mail