1.Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD+-SIRT3 pathway in rats.
Xiunan QIN ; Qin QIN ; Ke RAN ; Guixiu YUAN ; Yetian CHANG ; Yaping WANG ; Yanying XIAO
Journal of Central South University(Medical Sciences) 2022;47(8):1108-1119
OBJECTIVES:
Myocardial ischemia reperfusion injury (IRI) occurs occasionally in the process of ischemic heart disease. Sevoflurane preconditioning has an effect on attenuating IRI. Preserving the structural and functional integrity of mitochondria is the key to reduce myocardial IRI. Silent information regulator 3 (SIRT3), a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, is an important signal-regulating molecule in mitochondria. This study aims to explore the role of mitochondrial NAD+-SIRT3 pathway in attenuating myocardial IRI in rats by sevoflurane preconditioning.
METHODS:
A total of 60 male Sprague Dawley (SD) rats were randomly divided into 5 groups (n=12): A sham group (Sham group), an ischemia reperfusion group (IR group), a sevoflurane preconditioning group (Sev group, inhaled 2.5% sevoflurane for 30 min), a sevoflurane preconditioning+SIRT3 inhibitor 3-TYP group (Sev+3-TYP group, inhaled 2.5% sevoflurane for 30 min and received 5 mg/kg 3-TYP), and a 3-TYP group (5 mg/kg 3-TYP). Except for the Sham group, the IR model in the other 4 groups was established by ligating the left anterior descending coronary artery. The size of myocardial infarction was determined by double staining. Serum cardiac troponin I (cTnI) level was measured. The contents of NAD+ and ATP, the activities of mitochondrial complexes I, II, and IV, the content of MDA, the activity of SOD, and the changes of mitochondrial permeability were measured. The protein expression levels of SIRT3, SOD2, catalase (CAT), and voltage dependent anion channel 1 (VDAC1) were detected by Western blotting. The ultrastructure of myocardium was observed under transmission electron microscope. MAP and HR were recorded immediately before ischemia (T0), 30 min after ischemia (T1), 30 min after reperfusion (T2), 60 min after reperfusion (T3), and 120 min after reperfusion (T4).
RESULTS:
After ischemia reperfusion, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased (both P<0.01), and an obvious myocardial injury occurred, including the increase of myocardial infarction size and serum cTnI level (both P<0.01). Correspondingly, the mitochondria also showed obvious damage on energy metabolism, antioxidant function, and structural integrity, which was manifested as: the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level and mitochondrial permeability were increased (all P<0.01). Compared with the IR group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were increased in the Sev group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were decreased in the Sev group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were increased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were decreased in the Sev group (all P<0.01). Compared with the Sev group, the content of NAD+ in cardiac tissues and the expression level of SIRT3 protein were decreased in the Sev+3-TYP group (both P<0.01); the size of myocardial infarction and the level of serum cTnI were increased in the Sev+3-TYP group (both P<0.01); the activities of mitochondrial complexes I, II, and IV, ATP content, protein expression levels of SOD2 and CAT were decreased, while MDA content, VDAC1 protein expression level, and mitochondrial permeability were increased in the Sev+3-TYP group (all P<0.01).
CONCLUSIONS
Sevoflurane preconditioning attenuates myocardial IRI through activating the mitochondrial NAD+-SIRT3 pathway to preserve the mitochondrial function.
Adenosine Triphosphate/metabolism*
;
Animals
;
Male
;
Mitochondria/metabolism*
;
Myocardial Infarction/metabolism*
;
Myocardial Reperfusion Injury/metabolism*
;
NAD/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sevoflurane/metabolism*
;
Sirtuin 3/metabolism*
;
Voltage-Dependent Anion Channel 1/metabolism*
2.Human Bop is a novel BH3-only member of the Bcl-2 protein family.
Xiaoping ZHANG ; Changjiang WENG ; Yuan LI ; Xiaoyan WANG ; Chunsun JIANG ; Xuemei LI ; Youli XU ; Quan CHEN ; Lei PAN ; Hong TANG
Protein & Cell 2012;3(10):790-801
One group of Bcl-2 protein family, which shares only the BH3 domain (BH3-only), is critically involved in the regulation of programmed cell death. Herein we demonstrated a novel human BH3-only protein (designated as Bop) which could induce apoptosis in a BH3 domain-dependent manner. Further analysis indicated that Bop mainly localized to mitochondria and used its BH3 domain to contact the loop regions of voltage dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane. In addition, purified Bop protein induced the loss of mitochondrial transmembrane potential (Δψm) and the release of cytochrome c. Furthermore, Bop used its BH3 domain to contact pro-survival Bcl-2 family members (Bcl-2, Bcl-X(L), Mcl-1, A1 and Bcl-w), which could inhibit Bop-induced apoptosis. Bop would be constrained by pro-survival Bcl-2 proteins in resting cells, because Bop became released from phosphorylated Bcl-2 induced by microtubule-interfering agent like vincristine (VCR). Indeed, knockdown experiments indicated that Bop was partially required for VCR induced cell death. Finally, Bop might need to function through Bak and Bax, likely by releasing Bak from Bcl-X(L) sequestration. In conclusion, Bop may be a novel BH3-only factor that can engage with the regulatory network of Bcl-2 family members to process intrinsic apoptotic signaling.
Amino Acid Sequence
;
Animals
;
Apoptosis
;
Cell Line
;
Cell Survival
;
Humans
;
Mice
;
Mitochondria
;
metabolism
;
Mitochondrial Membranes
;
metabolism
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
Protein Transport
;
Proto-Oncogene Proteins c-bcl-2
;
chemistry
;
metabolism
;
Signal Transduction
;
Time Factors
;
Voltage-Dependent Anion Channel 1
;
metabolism
;
bcl-2 Homologous Antagonist-Killer Protein
;
metabolism
;
bcl-2-Associated X Protein
;
metabolism