1.Global Profiling of the Lysine Crotonylome in Different Pluripotent States
Lv YUAN ; Bu CHEN ; Meng JIN ; Ward CARL ; Volpe GIACOMO ; Hu JIEYI ; Jiang MENGLING ; Guo LIN ; Chen JIEKAI ; A.Esteban MIGUEL ; Bao XICHEN ; Cheng ZHONGYI
Genomics, Proteomics & Bioinformatics 2021;19(1):80-93
Pluripotent stem cells (PSCs) can be expanded in vitro in different culture conditions, resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for devel-opmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifi-cations of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated peptides and liquid chromatography–tandem mass spectrometry (LC–MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states includ-ing ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A (crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consis-tent with previous observations showing that enhanced proteasome activity helps to sustain pluripo-tency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions.
2.Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency.
Shahzina KANWAL ; Xiangpeng GUO ; Carl WARD ; Giacomo VOLPE ; Baoming QIN ; Miguel A ESTEBAN ; Xichen BAO
Genomics, Proteomics & Bioinformatics 2020;18(1):16-25
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.