1.Effect of homogeneity on cell growth and anthocyanin biosynthesis in suspension cultures of Vitis vinifera.
Jun-Ge QU ; Wei ZHANG ; Mei-Fang JIN ; Xing-Ju YU
Chinese Journal of Biotechnology 2006;22(5):805-810
The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. To understand the instability, the investigation of anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, has been initiated in our laboratory. Suspension culture of a relatively homogeneous cell line E of V. vinifera, was established by long-term cell line selection by anthocyanin content differentiation. The aggregate size of E was smaller than that of other cell lines obtained by routine screening method. The variation coefficients of anthocyanin content in suspension cultures of E were 8.7% in long-term subcultures and 5% in repeated flasks, respectively. The effects of elicitor, precursor feeding and light irridiation on biomass and anthocyanin accumulation in suspension cultures of E had been investigated and the results showed that all the variation coefficients were lower than 12% and this indicated the importance of homogeneity on stable production in plant cell culture. With the combination treatment of 30micromol/L phenylalanine and 218micromol/L methyl jasmonate in the dark in suspension cultures of E, the anthocyanin content and production in suspension culture of E was 5.89-fold and 4.30-fold of the controls, respectively, and all the variation coefficients of biomass and anthocyanin accumulation were lower than those of the controls in 5 successive subcultures.
Anthocyanins
;
biosynthesis
;
Biomass
;
Cell Proliferation
;
Light
;
Suspensions
;
Vitis
;
cytology
;
metabolism
2.Comparison of stilbene synthase from different plant sources for resveratrol biosynthesis.
Huili GUO ; Zaiqi LUO ; Yadong YANG ; Mingfeng YANG ; Heshu LÜ ; Chunmei LIU ; Jing YANG ; Younian WANG ; Lanqing MA
Chinese Journal of Biotechnology 2014;30(10):1622-1633
Resveratrol is a natural phytoalexin with special pharmacological and health functions. Stilbene synthase (STS) is a key and rate-limiting enzyme in the biosynthesis of resveratrol that is present only in a limited number of plants. The content of resveratrol from Polygonum cuspidatum is more than 1000 times higher than grapes and peanuts. We speculate that the catalytic ability of different STS may be one of the reasons causing differences in the content of resveratrol. To verify the above speculation, Vitis vinifera stilbene synthase gene (VvSTS) was amplified according to overlap PCR protocol with genomic DNA as template. VvSTS and PcSTS (PcPKS5) were analyzed through heterologous expression in Escherichia coli. The expression products were purified with Ni-NTA sepharose affinity chromatography and desalted through PD-10 column. The molecular weight of the two fusion proteins was about 43 kDa. Enzyme reaction and product analysis showed that the two products were resveratrol. The enzyme kinetic analysis showed that the catalyze efficiency (Kcat/Km) of PcPKS5 was 2.4 times of the VvSTS. Our findings confirms that STS from certain plants has much higher catalytic capability.
Acyltransferases
;
metabolism
;
Fallopia japonica
;
enzymology
;
Recombinant Fusion Proteins
;
biosynthesis
;
Stilbenes
;
metabolism
;
Vitis
;
enzymology
3.Transcriptional analysis of grape in response to weak light stress.
Tianchi CHEN ; Tao XU ; Xuefu LI ; Leyi SHEN ; Lingling HU ; Yanfei GUO ; Yonghong JIA ; Yueyan WU
Chinese Journal of Biotechnology 2022;38(10):3859-3877
Grape (Vitis vinifera L.) in production is frequently exposed to inadequate light, which significantly affects its agronomic traits via inhibiting their physiological, metabolic and developmental processes. To explore the mechanism how the grape plants respond to the weak light stress, we used 'Yinhong' grape and examined their physiology-biochemistry characteristics and transcriptional profile under different levels of weak light stress. The results showed that grape seedlings upon low intensity shading treatments were not significantly affected. As the shading stress intensity was strengthened, the epidermis cells, palisade tissue, and spongy tissue in the leaves were thinner, the intercellular space between the palisade tissue and spongy tissue was larger compared with that of the control, and the activities of superoxide dismutase, catalase and peroxidase were decreased gradually. Additionally, the soluble protein content increased and the free proline content decreased gradually. Compared with the control, significant changes in plant photosynthetic characteristics and physiology-biochemistry characteristics were observed under high intensity of shading (80%). RNA-seq data showed that the differentially expressed genes between CK and T2, CK and T4, T2 and T4 were 13 913, 13 293 and 14 943, respectively. Most of the enrichment pathways were closely related with the plant's response to stress. Several signaling pathways in response to stress-resistance, e.g. JA/MYC2 pathway and MAPK signal pathway, were activated under weak light stress. The expression level of a variety of genes related to antioxidation (such as polyphenol oxidase and thioredoxin), photosynthesis (such as phytochrome) was altered under weak light stress, indicating that 'Yinhong' grape may activate the antioxidation related pathways to cope with reactive oxygen species (ROS). In addition, it may activate the expression of photosynthetic pigment and light reaction structural protein to maintain the photosynthesis activity. This research may help better understand the relevant physiological response mechanism and facilitate cultivation of grape seedlings under weak light.
Vitis/metabolism*
;
Gene Expression Regulation, Plant
;
Photosynthesis/genetics*
;
Plant Leaves
;
Light
;
Seedlings/metabolism*
4.Instability of anthocyanin composition under different subculture conditions during long-term suspension cultures of Vitis vinifera L. var. Gamay Fréaux.
Junge QU ; Wei ZHANG ; Xingju YU
Chinese Journal of Biotechnology 2011;27(11):1613-1622
The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. In order to understand the instability in plant cell culture, we investigated anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, in our laboratory. Not only the anthocyanin contents but also its composition exhibited instability along with the long-term subculture. New methods were developed to indicate the instability of plant cell culture. Both the definition of instability coefficient (delta) and the application of factor scores were the first time in this field. To examine the effects of culture conditions on instability of anthocyanin biosynthesis, different subculture cycles and inoculum sizes had been investigated. Subculture cycle and inoculum size were both environmental cues driving the instability. Compared with subculture cycle, inoculum size was more effective in working on the instability of anthocyanin accumulation. Among all the conditions investigated in our study, (6.5 d, 2.00 g), (7 d, 2.00 g), (7.5 d, 2.00 g), (7 d, 1.60 g) and (7 d, 2.40 g), the condition of 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable production of anthocyanins.
Anthocyanins
;
biosynthesis
;
chemistry
;
Culture Techniques
;
methods
;
Time Factors
;
Vitis
;
growth & development
;
metabolism
5.Impact of subculture cycles and inoculum sizes on suspension cultures of Vitis vinifera.
Jun-Ge QU ; Wei ZHANG ; Quan-Li HU ; Mei-Fang JIN
Chinese Journal of Biotechnology 2006;22(6):984-989
The commercial application of plant cell cultures is often hindered by the instability of secondary metabolite biosynthesis, where the metabolite yield fluctuates and decline dramatically over subcultures. This study proposed that such instability is due to the fluctuations of culture variables. To validate this hypothesis, the effects of the fluctuations of two culture variables (subculture cycle and inoculum size) on the biomass, anthocyanin biosynthesig, intracellular carbon, nitrogen and phosphate during continuous 10 subculture cycles were investigated. The subculture cycle was fluctuated for 12h in a 7 day cycle (6.5, 7 and 7.5 d), and the inoculum size was fluctuated by 20% on basis of 2.00 g (1.60, 2.00 and 2.40 g). It was found that all the measured culture parameters fluctuated over the 10 subculture cycles. The fluctuation in terms of inoculum sizes had a greater effect on the stability of anthocyanin biosynthesis in suspension cultures of V. vinifera. Among all the subculture conditions investigated, 7d-subculture cycle and 1.60 g-inoculum size was the best one to hold the relatively stable anthocyanin production. The anthocyanin yield presented a negative correlation with intracellular sucrose content or intracellular total phosphate content.
Anthocyanins
;
biosynthesis
;
Carbohydrate Metabolism
;
Cell Culture Techniques
;
methods
;
Intracellular Space
;
metabolism
;
Phosphates
;
metabolism
;
Plant Proteins
;
metabolism
;
Suspensions
;
Vitis
;
cytology
;
growth & development
;
metabolism
6.Neuroprotective effects of resveratrol on 6-hydroxydopamine-induced damage of SH-SY5Y cell line.
Geon Cheon CHANG ; Hyoung Chun KIM ; Myung Bok WIE
Korean Journal of Veterinary Research 2014;54(1):1-6
Parkinson's disease is known to exhibit progressive degeneration of the dopaminergic neurons in the substantia nigra via inhibition of glutathione metabolism. It is well known that 6-Hydroxydopamine (6-OHDA) induces Parkinson's disease-like symptoms, while resveratrol (3,5,4'-trihydroxystilbene) has been shown to have anti-inflammatory and antioxidant effects. In the present study, we investigated the neuroprotective effects of resveratrol, a phytoalexin found in grapes and various plants, on 6-OHDA-induced cell damage to the SH-SY5Y human neuroblastoma cell line. Resveratrol (5 and 10 microM) inhibited 6-OHDA (60 microM)-induced cytotoxicity in SH-SY5Y cells and induced a reduction of the number of apoptotic nuclei caused by 6-OHDA treatment. Additionally, the total apoptotic rate of cells treated with both resveratrol (10 microM) and 6-OHDA (60 microM) was less than that of 6-OHDA treated cells. Resveratrol also dose-dependently (1, 5 and 10 microM) scavenged reactive oxygen species (ROS) induced by 6-OHDA in SH-SY5Y cells and prevented depletion of glutathione in response to the 6-OHDA-induced cytotoxicity in the glutathione assay. Overall, these results indicate that resveratrol exerts a neuroprotective effect against 6-OHDA-induced cytotoxicity of SH-SY5Y cells by scavenging ROS and preserving glutathione.
Antioxidants
;
Apoptosis
;
Cell Line*
;
Dopaminergic Neurons
;
Glutathione
;
Humans
;
Metabolism
;
Neuroblastoma
;
Neuroprotective Agents*
;
Oxidopamine
;
Parkinson Disease
;
Reactive Oxygen Species
;
Substantia Nigra
;
Vitis
7.Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice.
Su Hui PARK ; Tae Sun PARK ; Youn Soo CHA
Nutrition Research and Practice 2008;2(4):227-233
The aim of the present study was to assess the anti-obesity effects of grape seed extract (GSE) supplement in C57BL/6J mice. Thirty mice were divided into three groups; normal diet control group (ND), high fat diet control group (HD) and high fat diet plus grape seed extract supplemented group (HD+GSE). Results were as follows: 1. GSE supplement reduced the weight gain in mice fed high fat diets; epididymal and back fat weights were lower compared to non-supplemented HD group. 2. Blood lipid concentrations were lower in the HD+GSE group than in the HD group. Serum HDL-C concentrations were higher in the HD+GSE group compared with the other groups. 3. The concentrations of acid-insoluble acylcarnitines (AIAC) in serum and liver were higher in the HD+GSE group than in the HD group. 4. GSE supplementation increased mRNA levels of lipolytic genes such as carnitine palmitoyltransferase-1 (CPT-1) and decreased mRNA levels of lipogenic genes such as acetyl CoA carboxylase (ACC). These findings suggest that grape seed extract supplements in high fat diet might normalize body weight, epididymal and back fat weights, lipid concentrations, and carnitine levels through controlling lipid metabolism.
Acetyl-CoA Carboxylase
;
Animals
;
Body Weight
;
Carnitine
;
Diet
;
Diet, High-Fat
;
Gene Expression
;
Grape Seed Extract
;
Lipid Metabolism
;
Liver
;
Mice
;
Obesity
;
RNA, Messenger
;
Vitis
;
Weight Gain
;
Weights and Measures
8.Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation.
Xian Hua ZHANG ; Bo HUANG ; Soo Kyong CHOI ; Jung Sook SEO
Nutrition Research and Practice 2012;6(4):286-293
Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.
3T3-L1 Cells
;
Adipocytes
;
Adipogenesis
;
Arachis
;
Cell Proliferation
;
Ethanol
;
Glycerolphosphate Dehydrogenase
;
Lipid Metabolism
;
Obesity
;
Peroxisomes
;
Proteins
;
Sesquiterpenes
;
Skin
;
Stilbenes
;
Transcription Factors
;
Vitis
;
Wine
9.Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification.
Jun-Ge QU ; Xing-Ju YU ; Wei ZHANG ; Mei-Fang JIN
Chinese Journal of Biotechnology 2006;22(2):299-305
The low-production is a ubiquitous problem and has prevented the commercialization of secondary metabolite production in plant cell culture. In order to examine the effective approaches to improvement of secondary metabolite production in plant cell culture, the investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, had been initiated in our laboratory. In this present research, various elicitors and the precursor of phenylalanine were used in combination to enhance the anthocyanins production in suspension cultures of Vitis vinifera. And an integrated process with the combination of elicitation, precursor feeding and light irradiation was reported for rational bioprocess design. Among the combination treatment of phenylalanine feeding and several elicitors (methyl-beta-cyclodextrin, dextran T-40, methyl jasmonate, extracts of Aspergillus niger and Fusarium orthoceras), the combination with methyl jasmonate gave the highest anthocyanins production in suspension cultures of Vitis vinifera. When compared to the controls, the anthocyanins content (CV/g, FCW) and production (CV/L) increased by 2.7-fold and 3.4-fold, respectively. The optimum time for the addition of phenylalanine and methyl jasmonate was 4 days after inoculation. Two cell lines with different anthocyanins-producing capacity responded differently to the optimum combination treatment of 30 micromol/L phenylalanine feeding, 218 micromol/L methyl jasmonate elicitation and 3000 to approximately 4000 1x light illumination. The high-and low-anthocyanins-producing cell lines of VV05 and VV06 produced the maximum of 2975 and 4090 CV/L of anthocyanins that were 2.5- and 5.2-fold of the controls, respectively.
Acetates
;
pharmacology
;
Anthocyanins
;
biosynthesis
;
Cell Culture Techniques
;
methods
;
Cells, Cultured
;
Culture Media
;
Cyclopentanes
;
pharmacology
;
Light
;
Oxylipins
;
pharmacology
;
Phenylalanine
;
pharmacology
;
Vitis
;
cytology
;
metabolism
10.Protective effect of grape seed proanthocyanidin on spermatogenesis following testicular torsion/detorsion in mice.
Rui SHANG ; Xin-Min ZHENG ; Zhi-Ping XIA ; Lin ZHANG ; Xue-Jiao ZHENG
National Journal of Andrology 2013;19(5):409-413
OBJECTIVETo investigate the protective effect of grape seed proanthocyanidin (GSP) on spermatogenesis following testicular torsion/detorsion in mice.
METHODSTwenty-four healthy male Kunming mice, aged 8 weeks and weighing 25 - 27 g, were randomly divided into a control, a torsion and a treatment group, each containing 8 animals. The unilateral testicular torsion/detorsion model was established in the treatment and torsion groups. Thirty minutes before detorsion, the animals of the treatment group were injected intraperitoneally with 50 mg/kg GSP, and those of the torsion group with normal saline at the same dose, both for 3 days postoperatively. On the 4th day after surgery, ipsilateral orchiectomy were performed to detect histopathological changes, the levels of superoxide dismutase (SOD) and malondialdehyde (MDA), and the apoptotic index (AI) of germ cells in all the mice.
RESULTSCompared with the torsion group, the treated mice showed significantly increased Johnsen score (5.00 +/- 1.85 vs 7.38 +/- 0.92, P < 0.05), seminiferous tubule diameter ([176.50 +/- 1.60]microm vs [178.75 +/- 1.58] microm, P > 0.05), spermatogenic cell layers (3.75 +/- 1.03 vs 5.75 +/- 0.71, P < 0.05) and SOD activity ([29.04 +/- 4.46] U/mg prot vs [52.67 +/- 3.57] U/mg prot, P < 0.05), but remarkably reduced level of MDA ([4.63 +/- 0.05] nmol/mg prot vs [2.91 +/- 0.04] nmol/mg prot, P < 0.05) and AI of germ cells ([40.50 +/- 1.60]% vs [16.25 +/- 1.67] %, P < 0.05).
CONCLUSIONGrape seed proanthocyanidin has a protective effect against spermatogenic injury in mice, the mechanisms of which may be related to its actions of scavenging oxygen free radicals, inhibiting lipid peroxidation and improving the antioxidant ability of the body.
Animals ; Grape Seed Extract ; pharmacology ; therapeutic use ; Male ; Malondialdehyde ; metabolism ; Mice ; Mice, Inbred Strains ; Proanthocyanidins ; pharmacology ; therapeutic use ; Spermatic Cord Torsion ; drug therapy ; metabolism ; Spermatogenesis ; drug effects ; Superoxide Dismutase ; metabolism ; Vitis