1.The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment.
Hong-Xia HAO ; Jie-Min CHEN ; Rong-Rong WANG ; Xiao-Ying YU ; Meng WANG ; Zhi-Lu ZHOU ; Yan-Liang SHENG ; Wen-Tao XIA
Journal of Forensic Medicine 2023;39(4):382-387
OBJECTIVES:
To study the virtual reality-pattern visual evoked potential (VR-PVEP) P100 waveform characteristics of monocular visual impairment with different impaired degrees under simultaneous binocular perception and monocular stimulations.
METHODS:
A total of 55 young volunteers with normal vision (using decimal recording method, far vision ≥0.8 and near vision ≥0.5) were selected to simulate three groups of monocular refractive visual impairment by interpolation method. The sum of near and far vision ≤0.2 was Group A, the severe visual impairment group; the sum of near and far vision <0.8 was Group B, the moderate visual impairment group; and the sum of near and far vision ≥0.8 was Group C, the mild visual impairment group. The volunteers' binocular normal visions were set as the control group. The VR-PVEP P100 peak times measured by simultaneous binocular perception and monocular stimulation were compared at four spatial frequencies 16×16, 24×24, 32×32 and 64×64.
RESULTS:
In Group A, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 24×24, 32×32 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group B, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 16×16, 24×24 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group C, there was no significant difference between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at all spatial frequencies (P>0.05). There was no significant difference in the P100 peak times measured at all spatial frequencies between simulant visual impairment eyes and simultaneous binocular perception in the control group (P>0.05).
CONCLUSIONS
VR-PVEP can be used for visual acuity evaluation of patients with severe and moderate monocular visual impairment, which can reflect the visual impairment degree caused by ametropia. VR-PVEP has application value in the objective evaluation of visual function and forensic clinical identification.
Humans
;
Evoked Potentials, Visual
;
Vision, Ocular
;
Vision, Binocular/physiology*
;
Vision Disorders/diagnosis*
;
Virtual Reality
2.Binocular vision function analysis of 75 subjects.
Ya-ping GAO ; Hai-ying WANG ; Xiu-rong TANG ; Ying ZHANG ; Xiao-tong HUO
Chinese Medical Sciences Journal 2004;19(3):I-I
Adult
;
Convergence, Ocular
;
physiology
;
Eyeglasses
;
Female
;
Humans
;
Male
;
Myopia
;
physiopathology
;
Vision, Binocular
;
physiology
3.Change of Eye Position in Patients with Orthophoria and Horizontal Strabismus under General Anesthesia.
Hee Chan KU ; Se Youp LEE ; Young Chun LEE
Korean Journal of Ophthalmology 2005;19(1):55-61
We studied the relationship between eye position in the awakened state and in the surgical plane of anesthesia in orthophoric and horizontal strabismus patients. We classified 105 orthophoric and horizontal strabismus patients into 5 groups, measured the eye position at the primary position by photographic measurement of the corneal reflex positions and undertook a quantitative study of eye position. Under general anesthesia, the mean divergence was 39.7 +/- 8 PD for the esotropia group, 36.6 +/- 11.7 PD for exophoria, 27.4 +/- 8.1 PD for orthophoria, and 11.1 +/- 10.2 PD for exotropia I (< or=30 PD). Therefore, the esotropia group had the largest amount of divergence among the groups, but the eye position of the exotropia II (> 30 PD) group was rather convergent at 11.0 +/- 6.5 PD. According to the eye position of the fixating and nonfixating eyes in the esotropia group, both eyes converged with an angle deviation of 14.4 +/- 4.8 PD divergent and 14.1 +/- 4.8 PD divergent, respectively (P=.71). In the exotropia groups (I, II), the fixating eye diverged but the nonfixating eye rather converged. Therefore, the angle deviation was 19.0 +/- 2.1 PD divergent for the fixating eye and 18.2 +/- 6.4 PD divergent for the nonfixating eye (P=.68). In conclusion, under general anesthesia, eye positions in the awakened state and in the surgical plane of anesthesia were convergent or divergent, and showed a tendency to converge into the position of 25-35 PD divergent. Therefore, we could not distinguish fixating eye from nonfixating eye under general anesthesia.
Adolescent
;
Adult
;
*Anesthesia, General
;
Child
;
Child, Preschool
;
Esotropia/*physiopathology
;
Exotropia/*physiopathology
;
Eye Movements/*physiology
;
Humans
;
Photography
;
Vision, Binocular/physiology
4.Clinical Usefulness of Binocular Multifocal Electroretinography in Patients with Monocular Macular Disease.
Jee Wook KIM ; Youn Joo CHOI ; Seung Yup LEE ; Kyung Seek CHOI
Korean Journal of Ophthalmology 2013;27(4):261-267
PURPOSE: To evaluate the clinical usefulness of binocular multifocal electroretinography (mfERG) by comparing results with conventional monocular mfERG in patients with monocular macular disease. METHODS: mfERG testing was conducted on 32 patients with monocular macular disease and 30 normal subjects. An initial mfERG was simultaneously recorded from both eyes with two recording electrodes under binocular stimulation. A second mfERG was subsequently recorded with conventional monocular stimulation. Amplitudes and implicit times of each ring response of the binocular and monocular recordings were compared. Ring ratios of the binocular and monocular recording were also compared. RESULTS: In the macular disease group, there were no statistical differences in amplitude or implicit time for each of the five concentric rings between the monocular and binocular recordings. However, with binocular simulation, the ring ratios (ring 1 / ring 4, ring 1 / ring 5) were significantly reduced in the affected eye. In the normal control group, there were no statistical differences in any parameters between the monocular and binocular recordings. CONCLUSIONS: Binocular mfERG could be a good alternative to the conventional monocular test. In addition, given that the test needs stable fixation of the affected eye during the binocular test, the reliability of the test results could be improved, especially for patients with monocular macular disease.
Adult
;
Aged
;
Aged, 80 and over
;
Electroretinography/*methods
;
Female
;
Humans
;
Male
;
Middle Aged
;
Prospective Studies
;
Vision, Binocular/physiology
;
Vision, Monocular/physiology
;
Visual Acuity/*physiology
;
Wet Macular Degeneration/*diagnosis/*physiopathology
5.Effect of Watching 3-Dimensional Television on Refractive Error in Children.
Seung Hyun KIM ; Young Woo SUH ; Yong Min CHOI ; Ji Yoon HAN ; Gi Tae NAM ; Eun Joo YOU ; Yoonae A CHO
Korean Journal of Ophthalmology 2015;29(1):53-57
PURPOSE: To investigate the effect of watching 3-dimensional (3D) television (TV) on refractive error in children. METHODS: Sixty healthy volunteers, aged 6 to 12 years, without any ocular abnormalities other than refractive error were recruited for this study. They watched 3D TV for 50 minutes at a viewing distance of 2.8 meters. The image disparity of the 3D contents was from -1 to 1 degree. Refractive errors were measured both before and immediately after watching TV and were rechecked after a 10-minute rest period. The refractive errors before and after watching TV were compared. The amount of refractive change was also compared between myopes and controls. The refractive error of the participants who showed a myopic shift immediately after watching TV were compared across each time point to assure that the myopic shift persisted after a 10-minute rest. RESULTS: The mean age of the participants was 9.23 ± 1.75 years. The baseline manifest refractive error was -1.70 ± 1.79 (-5.50 to +1.25) diopters. The refractive errors immediately after watching and after a 10-minute rest were -1.75 ± 1.85 and -1.69 ± 1.80 diopters, respectively, which were not different from the baseline values. Myopic participants (34 participants), whose spherical equivalent was worse than -0.75 diopters, also did not show any significant refractive change after watching 3D TV. A myopic shift was observed in 31 participants with a mean score of 0.29 ± 0.23 diopters, which resolved after a 10-minute rest. CONCLUSIONS: Watching properly made 3D content on a 3D TV for 50 minutes with a 10-minute intermission at more than 2.8 meters of viewing distance did not affect the refractive error of children.
Accommodation, Ocular/*physiology
;
Child
;
Depth Perception/*physiology
;
Disease Progression
;
Female
;
Humans
;
Imaging, Three-Dimensional/*adverse effects
;
Male
;
Refractive Errors/*physiopathology
;
*Television
;
Vision, Binocular/*physiology
6.Consecutive Esodeviation After Exotropia Surgery in Patients Older than 15 Years: Comparison with Younger Patients.
Hye Jin PARK ; Sang Mook KONG ; Seung Hee BAEK
Korean Journal of Ophthalmology 2008;22(3):178-182
PURPOSE: The purpose of this study was to investigate the clinical course of esodeviation after exotropia surgery in older patients (older than 15 years) and to compare it with that in younger patients (15 years or younger). METHODS: The medical records of all surgeries for exodeviation from December 2004 to February 2007 were reviewed and 82 patients were found with consecutive esodeviation. The patients were divided into two groups according to their age: Group A (patients older than 15 years) and Group B (patients age 15 or younger). The clinical course of esodeviation in Group A was compared to that in Group B by means of survival analysis. RESULTS: The median survival times of the esodeviation were 2.0+/-0.1 months in Group A and 1.0+/-0.1 months in Group B (p=0.40). The prevalence of consecutive esotropia at six months was 0% in Group A and 6.1% in Group B (p=0.32). The myopic refractive error, worse sensory condition, and a larger preoperative exodeviation in Group A did not affect the clinical course of the two groups differently. CONCLUSIONS: The postoperative esodeviation of patients older than 15 years after exotropia surgery tended to persist longer during the early postoperative period than that of patients 15 years or younger, however, the difference did not persist at postoperative six months.
Adult
;
Age Factors
;
Child
;
Esotropia/*etiology/physiopathology
;
Exotropia/*surgery
;
Female
;
Humans
;
Kaplan-Meiers Estimate
;
Male
;
Oculomotor Muscles/*surgery
;
*Postoperative Complications
;
Vision, Binocular/physiology
;
Visual Acuity/physiology
7.Comparison of Surgical Outcomes with Unilateral Recession and Resection According to Angle of Deviation in Basic Intermittent Exotropia.
Soon Young CHO ; Se Youp LEE ; Jong Hyun JUNG
Korean Journal of Ophthalmology 2015;29(6):411-417
PURPOSE: The purpose of this study is to compare the surgical outcomes and near stereoacuities after unilateral medial rectus (MR) muscle resection and lateral rectus (LR) recession according to deviation angle in basic intermittent exotropia, X(T). METHODS: Ninety patients with basic type X(T) were included in this study. They underwent unilateral recession of the LR and resection of the MR and were followed postoperatively for at least 12 months. Patients were divided into three groups according to their preoperative deviation angle: group 1 < or =20 prism diopter (PD), 20 PD< group 2 <40 PD, and group 3 > or =40 PD. Surgical outcomes and near stereoacuities one year after surgery were evaluated. Surgical success was defined as having a deviation angle range within +/-10 PD for both near and distance fixation. RESULTS: Among 90 patients, groups 1, 2, and 3 included 30 patients each. The mean age in groups 1, 2, and 3 was 9.4 years, 9.4 years, and 11.0 years, respectively. The surgical success rates one year after surgery for groups 1, 2, and 3 were 80.0%, 73.3%, and 73.3% (chi-square test, p = 0.769), respectively. The undercorrection rates for groups 1, 2, and 3 were 16.7%, 23.3%, and 26.7%, and the overcorrection rates were 3.3%, 3.3%, and 0%, respectively. The mean preoperative near stereoacuities for groups 1, 2, and 3 were 224.3 arcsec, 302.0 arcsec, and 1,107.3 arcsec, and the mean postoperative near stereoacuities were 218.3 arcsec, 214.7 arcsec, and 743.0 arcsec (paired t-test; p = 0.858, p = 0.379, p = 0.083), respectively. CONCLUSIONS: In basic X(T) patients, the amount of angle deviation has no influence on surgical outcomes in unilateral LR recession and MR resection. The near stereoacuities by one year after LR recession and MR resection for intermittent X(T) were not different among patient groups separated by preoperative deviation angle.
Child
;
Exotropia/physiopathology/*surgery
;
Female
;
Follow-Up Studies
;
Humans
;
Male
;
Oculomotor Muscles/physiopathology/*surgery
;
*Ophthalmologic Surgical Procedures
;
Retrospective Studies
;
Treatment Outcome
;
Vision, Binocular/physiology
;
Visual Acuity/physiology
8.A Study on the Clinical Usefullness of Digitalized Random-dot Stereoacuity Test.
Jae Wook YANG ; Min Ho SON ; Il Han YUN
Korean Journal of Ophthalmology 2004;18(2):154-160
Existing methods of stereoacuity testing need specific glasses or optical device for use. We have designed a new stereoacuity test for the digitalized, random-dot stereogram and researched its clinical usefulness. A digitalized, random-dot, stereoacuity test card was created with a computer program that used a preferred symbol and the designed system was tested along with the Randot preschool stereoacuity, Titmus-fly and Lang tests to compare their sensitivity and specificity. The mean success rate of the digitalized, random-dot test was 98.2%, while the rates of the Randot preschool stereoacuity, Titmus-fly and Lang tests were 89.3%, 74.2% and 86.1%, respectively. Sensitivity and specificity of the new test were 100% and 95.3%, respectively, which were not that different from those of the Randot preschool stereoacuity, Titmus-fly and Lang tests. We found that the digitalized, random-dot, stereoacuity test has a high success rate and can be appropriately used in medical examinations and follow-up tests for strabismus patients.
Age Distribution
;
Child, Preschool
;
Comparative Study
;
Computer Graphics
;
Depth Perception/*physiology
;
Female
;
Humans
;
Male
;
Reproducibility of Results
;
Research Support, Non-U.S. Gov't
;
Sensitivity and Specificity
;
Software
;
Vision Disorders/*diagnosis
;
Vision Tests/*instrumentation/methods
;
Vision, Binocular
9.Application of contrast vision in identifying the malingering decreased vision.
Jie-Min CHEN ; Shu-Ya PENG ; Wen-Tao XIA ; Rui-Jue LIU ; Chun-Hong WENG
Journal of Forensic Medicine 2012;28(1):24-27
OBJECTIVE:
To study the application value of contrast vision in identifying the malingering decreased vision in the practice of clinical forensic medicine.
METHODS:
Thirty-one young and middle aged volunteers were selected and divided randomly into group 1 (16 persons with 32 eyes) and group 2 (15 persons with 30 eyes). The optotype contrast was 100%, 25%, 10% and 5%, respectively. The contrast vision of group 1 was tested. The contrast vision of group 2 was tested as follows: (1) the volunteers cooperated without inspector's interference; (2) the volunteers cooperated under inspector's interference; (3) the volunteers disguised decreased vision without inspector's interference; (4) the volunteers disguised decreased vision under inspector's interference. The data was then analyzed by statistics.
RESULTS:
There was a close correlation between contrast vision and contrast. As the contrast decreased, the vision acuity also decreased. The contrast vision curve of former two methods showed a good reproducibility while the contrast vision curve of latter two methods had a bad reproducibility.
CONCLUSION
The repetition of contrast curve with or without inspector's interference can be used to discriminate malingering vision. The acquired contrast curves can be provided to the court as direct evidence and can help enhance the verification conclusion.
Adult
;
Contrast Sensitivity/physiology*
;
Diagnosis, Differential
;
Female
;
Humans
;
Male
;
Malingering/psychology*
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Severity of Illness Index
;
Vision Tests/statistics & numerical data*
;
Vision, Binocular
;
Vision, Low/psychology*
;
Visual Acuity
;
Young Adult
10.Comparison of Postoperative Exodrift after First Unilateral and Second Contralateral Lateral Rectus Recession in Recurrent Exotropia.
Eun Yeong KIM ; Hyun Kyung KIM ; Se Youp LEE ; Young Chun LEE
Korean Journal of Ophthalmology 2016;30(1):48-52
PURPOSE: To compare postoperative exodrift of the first unilateral lateral rectus (ULR) muscle recession with the exodrift of the second contralateral ULR muscle recession in patients with recurrent small-angle exotropia (XT). METHODS: We evaluated the results of a second ULR muscle recession in 19 patients with recurrent XT with deviation angles under 25 prism diopter (PD), following a first procedure of ULR muscle recession for small-angle XT. Recession of the lateral rectus muscle ranged from 8 to 9 mm. The postoperative motor alignment and degree of exodrift were investigated after the first ULR muscle recession and the second ULR muscle recession in the same patients. RESULTS: Observed differences in postoperative ocular alignment between the first ULR muscle recession and the second ULR muscle recession were statistically significant at follow-up periods of six months (7.84 +/- 4.43 vs. 3.89 +/- 3.47 PD), one year (9.58 +/- 4.97 vs. 5.21 +/- 4.94 PD), and at a final follow-up (21.11 +/- 2.98 vs. 7.52 +/- 4.06 PD) after surgery (p = 0.006, 0.013, and 0.000). Postoperative exodrift was statistically different between the first and second ULR muscle recessions at three to six months (2.89 +/-3.75 vs. 0.63 +/- 3.45 PD) and one year to final follow-up (11.52 +/- 5.50 vs. 2.32 +/- 3.53 PD) (p = 0.034 and 0.000). All of the first ULR muscle recession patients showed XT with deviation angles of more than 15 PD at the final follow-up. Regardless, the surgical success rate (<8 PD) after the second ULR recession was 63.16% (12 patients) among the total amount of patients with recurrent XT. CONCLUSIONS: This study shows that changes in exodrift after a second ULR muscle recession are less than changes after the first URL muscle recession among patients with recurrent XT. A second ULR muscle recession may be a useful surgery for small-angle XT patients with deviation angles of 25 PD or less after a first ULR muscle recession.
Child
;
Child, Preschool
;
*Exotropia/etiology/physiopathology/surgery
;
Female
;
Follow-Up Studies
;
Humans
;
Male
;
Oculomotor Muscles/physiopathology/*surgery
;
*Ophthalmologic Surgical Procedures
;
*Postoperative Complications
;
Recurrence
;
Retrospective Studies
;
Vision, Binocular/physiology