1.Influence of fusion protein of IBDV VP2 and chicken interleukin-2 on immune response in chicken.
Chen WANG ; Zhanqin ZHAO ; Chunjie ZHANG ; Yichen LIU ; Ke DING ; Yinju LI ; Xiangchao CHENG ; Puyan CHEN
Chinese Journal of Biotechnology 2010;26(4):476-482
In order to research immunogenicity of the recombinant rVP2-IL-2 fusion protein, we obtained the rVP2-IL-2 fusion protein using Pichia pastoris expression system, and then evaluated its potential to induce immune responses in chicken. The effect was determined in the form of protective anti-IBDV VP2 titers, antibodies (IgG1 and IgG2a), lymphocyte proliferation, the levels of interferon-gamma and interleukin-4 cytokines, and challenge experiment. Antibody titers and proliferation lymphocyte level suggested that the fusion protein could elicit specific humoral immune and cellular immune responses, antibody sub-type results indicated that the rVP2-IL-2 fusion protein induced secretion both of IgG1 and IgG2a. The seem result elicited from cytokines ELISA test, secretion of both of Th1 (gamma-IFN) and Th2 (IL-4) were induced by the rVP2-IL-2 fusion protein. Challenge experiment result shown that chicken immunized the rVP2-IL-2 fusion protein obtained 85% protection. These results confirm that the fusion protein enhances the protection against IBDV through both humoral and cell-mediated immunity, and thus could serve as a candidate for the development of IBDV subunit vaccine.
Animals
;
Antibodies, Viral
;
biosynthesis
;
blood
;
Chickens
;
immunology
;
Immunoglobulin G
;
blood
;
Interleukin-2
;
biosynthesis
;
genetics
;
Pichia
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Th1 Cells
;
immunology
;
Th2 Cells
;
immunology
;
Vaccines, Subunit
;
immunology
;
Viral Structural Proteins
;
biosynthesis
;
genetics
;
Viral Vaccines
;
immunology
2.Prokaryotic expression and antigenic activity analysis on the matrix protein genes of two strains of human metapneumovirus recently identified in Beijing.
Shou-Chun CAO ; Yuan QIAN ; Guo-Hua LI ; Ru-Nan ZHU ; Lin-Qing ZHAO ; Ya-Xin DING
Chinese Journal of Virology 2007;23(1):60-62
Human metapneumovirus (hMPV) is a recently identified respiratory virus more like human respiratory syncytial virus in clinical symptoms. Matrix protein (M) is one of the most important structural proteins. For further studying of hMPV, the full length of M genes from the recombinant plasmid pUCm-M1816 and pUCmM1817 were cloned by PCR and sub-cloned into the pET30a(+) vector, which is a prokaryotic expression vector, after dual-enzyme digestion with Bam HI and Xho I. The positive recombinated plasmids were transformed into E. coli BL21 (DE3) and expressed under the inducing of IPTG. Target proteins were characterized by SDS-PAGE and Western blotting. In this article, we' ve successfully constructed the recombinated plasmids pET30a-M1816 and pET30a-M1817 which have correct open reading frames confirmed by dual-enzyme digestion analysis and sequencing. The fusion proteins with 6 x His-N were highly produced after inducing by 1mmol/ L IPTG at 37 degrees C. A unique protein band with approximate 27.6 kD was characterized by SDS-PAGE. Most of the target protein existed in inclusion body. Western blot analysis showed that the target protein has specific binding reaction to rabbit antiserum against polypeptides of the matrix protein of hMPV. So the M genes were highly expressed in the prokaryotic system and the expressed M proteins have specific antigenic activities. It can be used for further studying of hMPV infections in Beijing.
Animals
;
Antigens, Viral
;
genetics
;
immunology
;
metabolism
;
Blotting, Western
;
China
;
Gene Expression
;
Genetic Vectors
;
genetics
;
Humans
;
Immune Sera
;
immunology
;
Metapneumovirus
;
genetics
;
immunology
;
metabolism
;
Plasmids
;
genetics
;
Prokaryotic Cells
;
metabolism
;
Rabbits
;
Species Specificity
;
Viral Structural Proteins
;
genetics
;
immunology
;
metabolism
3.Recombinant Vp2 protein of infectious bursal disease virus AH1 strain expressed in insect cells: a vaccine candidate.
Wei OUYANG ; Yongshan WANG ; Yu ZHOU ; Haibin ZHANG ; Yude TANG
Chinese Journal of Biotechnology 2010;26(5):595-603
Protective immune response of the available IBD vaccine is insufficient to fully protect against the prevailing strain of the infectious bursal disease virus (IBDV). Such a vaccination escape IBDV field isolate idenfied from Anhui province of China in December 2007, where IBD broke out at 2 weeks post vaccination. The IBDV vp2 gene was cloned into pFastBacHTA donor plasmid, followed by generation of the recombinant bacmid DNA pBac-VP2. The latter was used to transfect insect cell Sf9 with Lipofectamine to produce recombinant baculovirus vBac-VP2. The Sf9 cells infected with vBac-VP2 were stained positive against IBDV antibody using the indirect immunofluorescence assay (IFA), which was also confirmed by the detection of IBDV Vp2 protein in the infected Sf9 cells by IBDV sandwich ELISA. Western blotting revealed that the calculated protein of approximately 53 kDa was in the expressed in the insect cells. Moreover, virus-like particles (VLPs) and "inclusion body-like"structure in the infected Sf9 cells were observed under electron microscopy. We further developed an indirect ELISA for the detection of the IBDV antibodies, which was specific and sensitive. In addition, the lysates of vBac-VP2 infected cells was used to immunize 2-week-old SPF chickens, followed by challenging with the virulent IBDV, the survival rate was 30% at 14 days post primary immunization, however, the survival rate was 100% at 14 d after the booster vaccination. The ELISA antibody titers was up to 3.2 x 10(3) and neutralization antibody titer was 2536, significantly higher than those of one-shot vaccination, 8 x 10(2) and 1106, respectively. The immunized chickens did not show any clinical signs and histopathological changes of infection in 7-days trial time. The bursa/body-weight ratios were higher than those of the unimmunized control (P < 0.05). The virus-like-particle recombinant Vp2 protein expressed in insect cells promises to be a novel subunit vaccine and diagnostic reagent candidate for IBDV.
Animals
;
Baculoviridae
;
genetics
;
Cell Line
;
Chickens
;
Infectious bursal disease virus
;
immunology
;
Insecta
;
genetics
;
metabolism
;
Poultry Diseases
;
prevention & control
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Viral Structural Proteins
;
biosynthesis
;
genetics
;
Viral Vaccines
;
immunology
4.DNA vaccination via in vivo electroporation can elicit specific immune response against highly pathogenic H5N1 influenza viral structural antigens in mice.
Wen WANG ; Hong CHEN ; Wen-jie TAN ; Yao DENG ; Min WANG ; Yuan LIU ; Xiao YIN ; Ke ZHANG ; Jie GUAN ; Jian-fang ZHOU ; Yue-long SHU ; Li RUAN
Chinese Journal of Virology 2010;26(3):170-175
This study aims to develop inexpensive and effective experimental vaccines against highly pathogenic H5N1 Avian Influenza (HPAI) virus and to optimize their immunization programs. To this end, we first synthesized the codon-optimized hemagglutinin gene (HAop) and neuraminidase gene (NAop), both of which were derived from a H5N1 virus (Anhui strain), and constructed successfully the DNA vaccines containing a single cistronic construct (HAwt, HAop, or NAop) or a bicistronic construct (HAop/M2 or NAop/M1) of H5N1 influenza virus origin. Their expression was confirmed by indirect immunofluorescent assay (IFA) and Western blotting. Then twice vaccination of mice with the DNA vaccines by injection intramuscularly or in vivo electroporation (EP) via two different routes was evaluated and analyzed by hemagglutination inhibition (HI) assay, NA-specific antibody detection, micro-neutralizing antibody test and IFN-gamma ELISpot assay. Our results showed that the DNA vaccines with coden-optimized HAop and NAop constructs could quickly elicit a strong immune response by in vivo EP, especially the cellular immune response against HA and NA; the in vivo EP via intradermal route induced stronger humoral immune responses than those via intramuscular route. Our findings will pave a way for further development of novel DNA-based H5N1 vaccine and for the optimization of the immunization programs of DNA vaccine.
Animals
;
Antigens, Viral
;
immunology
;
Codon
;
genetics
;
Electroporation
;
Female
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Vaccination
;
methods
;
Vaccines, DNA
;
genetics
;
immunology
;
metabolism
;
Viral Structural Proteins
;
immunology
5.Codon optimization of the rabbit hemorrhagic disease virus (RHDV) capsid gene leads to increased gene expression in Spodoptera frugiperda 9 (Sf9) cells.
Jingpeng GAO ; Chunchun MENG ; Zongyan CHEN ; Chuanfeng LI ; Guangqing LIU
Journal of Veterinary Science 2013;14(4):441-447
Rabbit hemorrhagic disease (RHD) is contagious and highly lethal. Commercial vaccines against RHD are produced from the livers of experimentally infected rabbits. Although several groups have reported that recombinant subunit vaccines against rabbit hemorrhagic disease virus (RHDV) are promising, application of the vaccines has been restricted due to high production costs or low yield. In the present study, we performed codon optimization of the capsid gene to increase the number of preference codons and eliminate rare codons in Spodoptera frugiperda 9 (Sf9) cells. The capsid gene was then subcloned into the pFastBac plasmid, and the recombinant baculoviruses were identified with a plaque assay. As expected, expression of the optimized capsid protein was markedly increased in the Sf9 cells, and the recombinant capsid proteins self-assembled into virus-like particles (VLPs) that were released into the cell supernatant. Rabbits inoculated with the supernatant and the purified VLPs were protected against RHDV challenge. A rapid, specific antibody response against RHDV was detected by an ELISA in all of the experimental groups. In conclusion, this strategy of producing a recombinant subunit vaccine antigen can be used to develop a low-cost, insect cell-derived recombinant subunit vaccine against RHDV.
Animals
;
Antigens, Viral/genetics/metabolism
;
Caliciviridae Infections/prevention & control/*veterinary/virology
;
Capsid Proteins/*genetics/metabolism
;
Cell Culture Techniques/*methods
;
Codon/genetics/metabolism
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
*Gene Expression Regulation, Viral
;
Hemorrhagic Disease Virus, Rabbit/*genetics/immunology
;
*Rabbits
;
Recombinant Proteins/genetics/metabolism
;
Sf9 Cells
;
Spodoptera
;
Viral Structural Proteins/*genetics/metabolism
;
Viral Vaccines/genetics/immunology
6.Construction and immunological characterization of recombinant Marek's disease virus expressing IBDV VP2 fusion protein.
Hong-Mei LIU ; Ai-Jian QIN ; Yue-Long LIU ; Wen-Jie JIN ; Jian-Qiangi YE ; Hong-Jun CHEN ; Hong-Xia SHAO ; Ying-Xiao LI
Chinese Journal of Biotechnology 2006;22(3):391-396
A transfer plasmid vector pUC18-US10-VP2 was first constructed by inserting the gene of the enhancer green fluorescent protein(eGFP) fused to the VP2 gene of very virulent Infectious bursal disease virus (IBDV) JS strain into the US10 fragment of the Marek's disease virus (MDV) CV1988/Rispens. The recombinant virus, designated as rMDV, was developed by co-transfecting CEF with the transfer plasmid vector and simultaneously infecting with the CVI988/Rispens virus. The PCR and IFA results indicated that the rMDV is stable after 31 passages. Chickens vaccinated with rMDV were protected from challenge with 100LD50 of IBDV JS. The protection ratio of the chickens vaccinated with the 1000PFU, 2000PFU, 5000PFU of the rMDV were 50%, 60%, and 80% respectively. It is interesting that the average histopathology BF lesion scores of chicken group immunized with 5000PFU of rMDV by one-time vaccination was close to that of chicken group vaccinated with IBDV live vaccine NF8 strain for twice (2.0/1.5). There is no difference in protection between the groups (P > 0.05) but significent difference between groups immunized with 5000 PFU of rMDV and with normal MDV. This demonstrated that rMDV expressing VP2 fusion protein was effective vaccine against IBDV in SPF chickens.
Animals
;
Birnaviridae Infections
;
prevention & control
;
veterinary
;
Chickens
;
Genetic Vectors
;
Green Fluorescent Proteins
;
genetics
;
Infectious bursal disease virus
;
genetics
;
immunology
;
Mardivirus
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Recombination, Genetic
;
Transfection
;
Vaccination
;
Vaccines, DNA
;
genetics
;
immunology
;
Viral Structural Proteins
;
biosynthesis
;
genetics
;
immunology
;
Viral Vaccines
;
genetics
;
immunology
7.Evaluation of modified vaccinia virus Ankara expressing VP2 protein of infectious bursal disease virus as an immunogen in chickens.
Flavia Adriana ZANETTI ; Maria Paula Del Medico ZAJAC ; Oscar Alberto TABOGA ; Gabriela CALAMANTE
Journal of Veterinary Science 2012;13(2):199-201
A recombinant modified vaccinia Ankara (MVA) virus expressing mature viral protein 2 (VP2) of the infectious bursal disease virus (IBDV) was constructed to develop MVA-based vaccines for poultry. We demonstrated that this recombinant virus was able to induce a specific immune response by observing the production of anti-IBDV-seroneutralizing antibodies in specific pathogen-free chickens. Besides, as the epitopes of VP2 responsible to induce IBDV-neutralizing antibodies are discontinuous, our results suggest that VP2 protein expressed from MVA-VP2 maintained the correct conformational structure. To our knowledge, this is the first report on the usefulness of MVA-based vectors for developing recombinant vaccines for poultry.
Animals
;
Antibodies, Viral
;
Birnaviridae Infections/prevention & control/*veterinary
;
Cells, Cultured
;
Chick Embryo
;
Chickens
;
Fibroblasts/metabolism
;
Infectious bursal disease virus/*immunology
;
Poultry Diseases/*prevention & control/virology
;
Specific Pathogen-Free Organisms
;
Vaccinia virus/*genetics/immunology/metabolism
;
Viral Structural Proteins/genetics/*immunology/metabolism
;
Viral Vaccines/*immunology
8.Preparation of a monoclonal antibody against polyhedrin of Ectropis obliqua nucleopolyhedrovirus.
Junli DU ; Chuanxi ZHANG ; Jianyu FU ; Zhengxian CHEN ; Qiang XIAO
Chinese Journal of Biotechnology 2012;28(1):76-85
To develop a method based on immunoreactions for detection of Ectropis obliqua Nucleopolyhedrovirus (EoNPV), the polyhedra of the virus were purified and used to immunize the mouse BALB/c. The spleen cells from the immunized mice were then fused with the myeloma cell line Sp2/0. A hybridoma cell line which can stably secrete the monoclonal antibody against EoNPV was achieved by using indirect ELISA screening and cloning methods, and was named as 7D3. Meanwhile, the polyhedrin gene was cloned from EoNPV and expressed in E. coli. Western blotting analysis showed that the monoclonal antibody prepared from 7D3 could specifically react with the recombinant polyhedrin. An indirect ELISA method based on this monoclonal antibody for detecting EoNPV in infected tea looper was developed.
Animals
;
Antibodies, Monoclonal
;
biosynthesis
;
genetics
;
immunology
;
Antibody Specificity
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
methods
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
Hybridomas
;
secretion
;
Lepidoptera
;
growth & development
;
virology
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Viral Structural Proteins
;
biosynthesis
;
genetics
;
immunology