1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.Immunogenic evaluation of pseudorabies virus gB protein expressed in the baculovirus-insect cell system.
Jin WANG ; Kai WANG ; Ying ZHANG ; Shuzhen TAN ; Shiqi SUN ; Huichen GUO ; Shuanghui YIN ; Jiaqiang NIU
Chinese Journal of Biotechnology 2025;41(7):2694-2706
Pseudorabies (PR) is an infectious disease caused by the pseudorabies virus (PRV), affecting various domesticated and wild animals. Since pigs are the only natural hosts of PRV, PR poses a serious threat to the pig farming industry. Currently, PR is primarily prevented through vaccination with inactivated vaccines or genetically modified attenuated live vaccines. Developing safe and effective genetically engineered vaccines would facilitate the eradication and control of PR. In this study, the PRV vaccine strain Bartha-K61 was used as the reference strain. The gB protein was expressed via the baculovirus-insect cell expression system. Non-denaturing gel electrophoresis confirmed that the gB protein could form a trimeric structure. The purified gB protein was used to immunize mice, and the immune effect was evaluated by a challenge test. The results showed that the gB antigen induced a strong immune response in mice, with the serum-neutralizing antibody titer above 1:70. The lymphocyte stimulation index reached more than 1.29, and the level of (interferon gamma, IFN-γ) release was higher than 100 pg/mL. After immunization, mice were challenged with the virus at a dose of 104 TCID₅₀/mL, 200 μL per mouse, and the clinical protection rate was 100%. Immunohistochemistry, histopathological section, and tissue viral load results showed that the pathological damage and viral load in the gB-immunized group were significantly lower than those in the PBS group. In summary, the gB protein obtained in this study induced strong humoral and cellular immune responses in mice, laying a foundation for developing a recombinant gB protein subunit vaccine.
Animals
;
Mice
;
Baculoviridae/metabolism*
;
Viral Envelope Proteins/biosynthesis*
;
Herpesvirus 1, Suid/genetics*
;
Pseudorabies/immunology*
;
Swine
;
Pseudorabies Vaccines/genetics*
;
Antibodies, Viral/blood*
;
Insecta/cytology*
;
Mice, Inbred BALB C
;
Female
;
Viral Vaccines/immunology*
3.Establishment and optimization of a high-performance size-exclusion chromatography method for quantifying the classical swine fever virus E2 protein.
Xiaojuan ZHANG ; Bo YANG ; Gaoyuan XU ; Mingxing REN ; Ji TANG ; Hongshuo LIU ; Zhankui LIU ; Yafei LI ; Xiangru WANG
Chinese Journal of Biotechnology 2025;41(7):2774-2788
This study aims to establish a high-performance size-exclusion chromatography (HPSEC) method for determining the content of the classical swine fever virus (CSFV) E2 protein and screen the optimal stabilizer to enhance the stability of this protein. The optimal detection conditions were determined by optimizing the composition of the mobile phase, and characteristic chromatographic peaks were identified by SDS-PAGE and Western blotting. The specificity, repeatability, precision, linearity, limit of detection (LOD), and limit of quantitation (LOQ) of the method were assessed. The method established was used to determine the content of CSFV E2 protein antigen and vaccine. Differential scanning fluorimetry (DSF) was employed to screen the buffer system, pH, and salt ion concentrations, and sugar, amino acid, and alcohol stabilizers were further screened. The results showed that using a 200 mmol/L phosphate buffer provided the best column efficiency. An antigen-specific chromatographic peak appeared at the retention time of 18 min, which was identified as the CSFV E2 protein by SDS-PAGE and Western blotting. The method exhibited high specificity for detecting the CSFV E2 protein, with no absorbance peak observed in the blank control. The relative standard deviation (RSD) of the peak area for six repeated injections of the CSFV E2 protein was 0.74%, indicating good repeatability of the method. The RSD for repeated detection of two different concentrations of CSFV E2 protein samples by different operators at different time points was less than 2%, suggesting good intermediate precision of the method. The peak area of the CSFV E2 protein was linearly related to its concentration, with the regression equation showing R2 of 1.000. The LOD and LOQ of the method were 14.88 μg/mL and 29.75 μg/mL, respectively. Application of the developed method in the detection of three batches of CSFV E2 protein antigen and three batches of vaccine demonstrated results consistent with those from the bicinchoninic acid (BCA) assay, which meant that the method could accurately determine the content of CSFV E2 protein antigen and vaccine. The DSF method identified 50 mmol/L Tris-HCl at pH 8.0 as the optimal buffer, and the addition of sugar and alcohol stabilizers further improved the stability of the CSFV E2 protein. The HPSEC method established in this study is simple, fast, and exhibits good accuracy and repeatability, enabling precise measurement of the CSFV E2 protein content. It is expected to play a crucial role in the quality control of the CSFV E2 vaccine. Furthermore, the strategy for improving the CSFV E2 protein stability, identified through DSF screening, has significant implications for enhancing the stability of the CSFV E2 vaccine.
Classical Swine Fever Virus/chemistry*
;
Chromatography, Gel/methods*
;
Animals
;
Swine
;
Viral Envelope Proteins/immunology*
4.Evaluation of antibodies against mpox virus M1R.
Yawen LIU ; Sai YANG ; Yi YANG ; Jingshu XIE ; Hua YANG ; Yan LI
Chinese Journal of Biotechnology 2025;41(8):3131-3142
The global outbreak of monkeypox in 2022 has aroused widespread concern in public health. To date, the prevention and treatment of monkeypox has mainly relied on smallpox vaccines and drugs. This study aims to screen and obtain therapeutic antibodies with high affinity, neutralizing activity, and protective effects, and provide candidate molecules for the development of specific therapeutic antibodies against monkeypox. Therefore, humanized mice were immunized to screen for antibodies against the envelope protein of the mpox virus. Two M1R-specific antibodies, 12G5 and 12H6, were obtained, with the affinity of 0.095 nmol/L and 0.089 nmol/L, respectively. The 50% reduction of the plaque counts (PRNT50) of 12G5 and 12H6 was (1.821±1.766) μg/mL and (17.605±2.383) μg/mL, respectively. The two antibodies targeted two binding epitopes of M1R. Moreover, 12H6 could protect 60% of mice from death following the vaccinia virus challenge. This study provides research materials for subsequent in-depth studies on the immunoprotection of mpox virus and potential therapeutic strategies.
Animals
;
Mice
;
Antibodies, Viral/immunology*
;
Monkeypox virus/immunology*
;
Mpox, Monkeypox/immunology*
;
Antibodies, Neutralizing/immunology*
;
Viral Envelope Proteins/immunology*
;
Humans
;
Antibodies, Monoclonal/biosynthesis*
;
Female
5.Development and immunogenicity evaluation in mice of a novel mRNA vaccine expressing herpes simplex virus type 2 envelope glycoprotein gD.
Jialuo BING ; Liye JIN ; Yao DENG ; Shucai SUN ; Xiaotian HAN ; Xueting CHENG ; Zhenyong QI ; Tangqi WANG ; Ruiwen HAN ; Desheng ZHAI ; Wenjie TAN
Chinese Journal of Biotechnology 2025;41(8):3241-3251
Human alphaherpesvirus 2 (HSV-2) is the main pathogen resulting human genital herpes, which poses a major threat to the socio-economic development, while there is no effective vaccine. In this study, we developed a novel lipopolyplex (LPP)-delivered mRNA vaccine expressing the HSV-2 envelope glycoprotein gD and evaluated its immunogenicity in mice. The mRNA vaccine was prepared from the genetically modified gD mRNA synthesized in vitro combined with the LPP delivery platform and it was named gD-ORI mRNA. The expression of gD antigen in the mRNA vaccine was validated in vitro by Western blotting and indirect immunofluorescence assay, then the immune responses induced by this mRNA vaccine in mice were evaluated. The immunization with gD mRNA alone induced strong humoral and cellular immune responses in mice. Robust and long-lasting gD-specific IgG antibodies were detected in the mouse serum after booster immunization with gD-ORI mRNA. The immunized mice exhibited a Th1/Th2 balanced IgG response and robust neutralizing antibodies against HSV-2, and a clear dose-response relationship was observed. The gD-specific IgG antibodies were maintained in mice for a long time, up to 18 weeks post-booster immunization. At the same time, multifunctional gD-specific CD4+ and CD8+ T cells in vaccinated mice were detected by intracellular cytokine staining (ICS). This novel gD-expressing mRNA vaccine delivered by LPP induces strong and long-lasting immune responses in mice post booster immunization and has a promising prospect for development and application. This study provides scientific evidence and reference for the development of a new mRNA vaccine for HSV-2.
Animals
;
Herpesvirus 2, Human/genetics*
;
Viral Envelope Proteins/genetics*
;
Mice
;
Herpes Genitalis/immunology*
;
RNA, Messenger/immunology*
;
Female
;
Mice, Inbred BALB C
;
Antibodies, Viral/blood*
;
mRNA Vaccines/immunology*
;
Antibodies, Neutralizing/blood*
;
Humans
6.A fluorescence immunochromatography method for detection of human papillomavirus type 16 E6 and L1 proteins.
Xin'er LIU ; Yinzhen ZHAO ; Nannan NIU ; Lingke LI ; Xueli DU ; Jinxiang GUO ; Yingfu ZHANG ; Jichuang WANG ; Yiqing ZHANG ; Yunlong WANG
Chinese Journal of Biotechnology 2024;40(11):4266-4276
This study aims to establish a time-resolved fluorescence immunochromatography method for simultaneous determination of human papillomavirus (HPV) type 16 E6 and L1 protein concentrations. The amount of lanthanide microsphere-labeled antibodies, the concentration of coated antibodies, and the reaction time were optimized, and then a test strip for the simultaneous determination of the protein concentrations was prepared. The performance of the detection method was evaluated based on the concordance of the results from clinical practice. The optimal conditions were 8 μg and 10 μg of HPV16 L1 and E6-labeled antibodies, respectively, 1.5 mg/mL coated antibodies, and reaction for 10 min. The detection with the established method for L1 and E6 proteins showed the linear ranges of 5-320 ng/mL and 2-64 ng/mL and the lowest limits of detection of 1.78 ng/mL and 1.09 ng/mL, respectively. There was no cross reaction with human immunodeficiency virus (HIV), treponema pallidum (TP), or HPV18 E6 and L1 proteins. The average recovery rate of the established method was between 97% and 107%. The test strip prepared in this study showed the sensitivity, specificity, and diagnostic accuracy of 97.46%, 90.57%, and 95.32%, respectively, in distinguishing patients with cervical cancer and precancerous lesions from healthy subjects, with the area under the curve (AUC) of 0.980 1 and 95% Confidence Interval (CI) of 0.956 5 to 1.000 0. The time-resolved fluorescence immunochromatography combined with the test strips prepared in this study showed high sensitivity, high accuracy, simple operation, and rapid reaction in the quantitation of HPV16 E6 and L1 proteins. It thus can be used as an auxiliary method for the diagnosis and early screening of cervical cancer and precancerous lesions and the assessment of disease course.
Oncogene Proteins, Viral/immunology*
;
Humans
;
Chromatography, Affinity/methods*
;
Female
;
Human papillomavirus 16
;
Repressor Proteins/immunology*
;
Capsid Proteins/immunology*
;
Papillomavirus Infections/diagnosis*
;
Fluorescence
;
Uterine Cervical Neoplasms/virology*
7.Advances in the anti-host interferon immune response of bluetongue virus.
Qisha LI ; Xuyan CAI ; Shimei LUO ; Yunyi CHEN ; Huashan YI ; Xianping MA
Chinese Journal of Biotechnology 2024;40(12):4439-4451
Bluetongue virus (BTV) usually infects sheep, cattle, deer and other domesticated and wild ruminants through the bite of the vector insects, Culicoide, causing bluetongue (BT). BT in subtropical and even temperate regions poses a serious threat to the development and international trade of the livestock industry. This article introduced the structure and cellular invasion, and summarized the mechanisms of anti-BTV immune response of host cells and antagonism of host cell innate immune response by the non-structural proteins (e.g., NS3 and NS4) and structural proteins (e.g., VP3 and VP4) of BTV. This review provided a basis for understanding the antagonism mechanisms of BTV against the interferon (IFN) immune response in the host cell and the pathogenesis of BTV as well as for developing novel vaccines against this virus.
Bluetongue virus/immunology*
;
Animals
;
Bluetongue/prevention & control*
;
Immunity, Innate
;
Interferons/immunology*
;
Sheep
;
Viral Nonstructural Proteins/immunology*
;
Cattle
8.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
9.Seroprevalence of IgM and IgG Antibodies against SARS-CoV-2 in Asymptomatic People in Wuhan: Data from a General Hospital Near South China Seafood Wholesale Market during March to April in 2020.
Rui Jie LING ; Yi Han YU ; Jia Yu HE ; Ji Xian ZHANG ; Sha XU ; Ren Rong SUN ; Wang Cai ZHU ; Ming Feng CHEN ; Tao LI ; Hong Long JI ; Huan Qiang WANG
Biomedical and Environmental Sciences 2021;34(9):743-749
The aim of this study was to estimate the seroprevalence of immunoglobulin M (IgM) and G (IgG) antibodies against SARS-CoV-2 in asymptomatic people in Wuhan. This was a cross-sectional study, which enrolled 18,712 asymptomatic participants from 154 work units in Wuhan. Pearson Chi-square test,
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Viral/blood*
;
COVID-19/immunology*
;
Carrier State/immunology*
;
Child
;
Child, Preschool
;
China/epidemiology*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Cross-Sectional Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Immunoglobulin M/blood*
;
Male
;
Middle Aged
;
Occupations/classification*
;
Phosphoproteins/immunology*
;
SARS-CoV-2/immunology*
;
Seroepidemiologic Studies
;
Spike Glycoprotein, Coronavirus/immunology*
;
Young Adult
10.TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2.
Nan SUN ; Li JIANG ; Miaomiao YE ; Yihan WANG ; Guangwen WANG ; Xiaopeng WAN ; Yuhui ZHAO ; Xia WEN ; Libin LIANG ; Shujie MA ; Liling LIU ; Zhigao BU ; Hualan CHEN ; Chengjun LI
Protein & Cell 2020;11(12):894-914
Tripartite motif (TRIM) family proteins are important effectors of innate immunity against viral infections. Here we identified TRIM35 as a regulator of TRAF3 activation. Deficiency in or inhibition of TRIM35 suppressed the production of type I interferon (IFN) in response to viral infection. Trim35-deficient mice were more susceptible to influenza A virus (IAV) infection than were wild-type mice. TRIM35 promoted the RIG-I-mediated signaling by catalyzing Lys63-linked polyubiquitination of TRAF3 and the subsequent formation of a signaling complex with VISA and TBK1. IAV PB2 polymerase countered the innate antiviral immune response by impeding the Lys63-linked polyubiquitination and activation of TRAF3. TRIM35 mediated Lys48-linked polyubiquitination and proteasomal degradation of IAV PB2, thereby antagonizing its suppression of TRAF3 activation. Our in vitro and in vivo findings thus reveal novel roles of TRIM35, through catalyzing Lys63- or Lys48-linked polyubiquitination, in RIG-I antiviral immunity and mechanism of defense against IAV infection.
A549 Cells
;
Animals
;
Apoptosis Regulatory Proteins/immunology*
;
DEAD Box Protein 58/immunology*
;
Dogs
;
HEK293 Cells
;
Humans
;
Influenza A Virus, H1N1 Subtype/immunology*
;
Madin Darby Canine Kidney Cells
;
Mice
;
Mice, Knockout
;
Orthomyxoviridae Infections/pathology*
;
Proteolysis
;
RAW 264.7 Cells
;
Signal Transduction/immunology*
;
THP-1 Cells
;
TNF Receptor-Associated Factor 3/immunology*
;
Ubiquitination/immunology*
;
Viral Proteins/immunology*

Result Analysis
Print
Save
E-mail