1.Advances in UL7 gene of herpesvirus.
Jie HUANG ; An-Chun CHENG ; Ming-Shu WANG
Chinese Journal of Virology 2011;27(5):501-504
Animals
;
Herpesviridae
;
genetics
;
metabolism
;
Humans
;
Viral Proteins
;
chemistry
;
genetics
;
metabolism
2.The baculovirus enhancin.
Xiao-xia ZHANG ; Xiao-hui CHEN ; Zhen-pu LIANG ; Su-mei CAO ; Fen XU ; Guan-hua QIAO ; Xing-ming YIN
Chinese Journal of Virology 2010;26(5):418-423
Baculoviridae
;
genetics
;
metabolism
;
Phylogeny
;
Viral Proteins
;
chemistry
;
classification
;
genetics
;
metabolism
3.Molecular biological progression of equine arteritis virus.
Chinese Journal of Virology 2008;24(5):404-408
5.Screening of cellular proteins binding to the core region of hepatitis C virus RNA by ultraviolet cross-linking assay.
Hai-xia SU ; Jing-xia ZHANG ; Xiao-ning ZHAO ; Juan LU ; Yong-ping YAN
Chinese Journal of Hepatology 2005;13(9):656-659
OBJECTIVETo screen cellular proteins binding to the core region of hepatitis C virus (HCV) from human hepatoma cells.
METHODSUnlabeled and labeled RNA transcripts were prepared by in vitro transcription. Cytoplasmic extracts were prepared from human hepatoma cells HepG2. Ultraviolet (UV) cross-linking was used to screen the cellular proteins that would bind to the core region of HCV. Competition experiment was performed to confirm the specificity of the binding in which excess unlabeled RNA of HCV core region and plasmid RNA were used as competitors.
RESULTSTwo cellular proteins of 6.6 x 10(4) and 5.5 x 10(4) were found binding to the core region of HCV RNA by UV cross-linking assay. The unlabeled core region of HCV RNA could compete out this binding whereas the unlabeled plasmid RNA could not.
CONCLUSIONThe cellular proteins from HepG2 cells could bind to the core region of HCV RNA.
Binding Sites ; Cross-Linking Reagents ; chemistry ; Hepacivirus ; genetics ; metabolism ; RNA, Viral ; genetics ; metabolism ; Ultraviolet Rays ; Viral Core Proteins ; genetics ; metabolism
6.Characteristics analysis on major genes and the encoded proteins of human G9P8 rotaviruses LL52696 and LL52727.
Dan-Di LI ; Shu-Xian CUI ; Qing ZHANG ; Miao JIN ; Jie-Mei YU ; Dong-Liang ZHANG ; Zi-Qian XU ; Jing-Yu TANG ; Zhong Shan WANG ; Zhao-Yin FANG ; Zhao-Jun DUAN
Chinese Journal of Virology 2008;24(2):144-147
Two Rotavirus G9P[8] strains (LL52696 and LL52727) were recognized during a sentinel-based survey in Lulong, China. Phylogenetic analysis of the VP7 gene showed that both strains isolated constituted a divergent genetic cluster distinct from the other G9 strains isolated in China. Analysis of VP4, VP6, and NSP4 genes revealed that these strains were closely related to Lulong strains. We hold that two strains were reassortant between G9 and Lulong predominant strains.
Amino Acid Sequence
;
Antigens, Viral
;
chemistry
;
genetics
;
Base Sequence
;
Capsid Proteins
;
chemistry
;
genetics
;
Glycoproteins
;
chemistry
;
genetics
;
Humans
;
Phylogeny
;
Rotavirus
;
classification
;
genetics
;
Toxins, Biological
;
chemistry
;
genetics
;
Viral Nonstructural Proteins
;
chemistry
;
genetics
7.In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli.
Ruchao PENG ; Tengfei ZHU ; Babayemi Olawale OLADEJO ; Abednego Moki MUSYOKI ; Yingzi CUI ; Yi SHI ; Peiyi WANG ; George Fu GAO
Protein & Cell 2016;7(12):888-898
Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.
Ebolavirus
;
chemistry
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Nucleocapsid
;
chemistry
;
genetics
;
metabolism
;
RNA, Viral
;
chemistry
;
genetics
;
metabolism
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Virus Assembly
8.Progress about genetic and variant study of rabies virus glycoprotein gene.
Chinese Journal of Virology 2011;27(2):184-188
Animals
;
Evolution, Molecular
;
Glycoproteins
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Mutation
;
Phylogeny
;
Rabies virus
;
genetics
;
physiology
;
Viral Proteins
;
chemistry
;
genetics
;
immunology
;
metabolism
9.Molecular characterization of a 13-amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.
Majid ESMAELIZAD ; Saber JELOKHANI-NIARAKI ; Khadije HASHEMNEJAD ; Morteza KAMALZADEH ; Mohsen LOTFI
Journal of Veterinary Science 2011;12(4):363-371
The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26-->Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.
Amino Acid Sequence
;
Amino Acid Substitution
;
Antigens, Viral/chemistry/*genetics/metabolism
;
Capsid Proteins/chemistry/*genetics/metabolism
;
Cloning, Molecular
;
Foot-and-Mouth Disease Virus/classification/*genetics/*metabolism
;
Gene Expression Regulation, Viral
;
Molecular Sequence Data
;
Phylogeny
;
Viral Nonstructural Proteins/chemistry/*genetics/metabolism
10.X-ray diffraction analysis of glycoprotein D from herpes simplex virus type 2.
Zhujun CHEN ; Guangwen LU ; Jianxun QI ; Xiang XU ; Na ZHANG ; Jinghua YAN ; Rongfu WANG
Chinese Journal of Biotechnology 2011;27(10):1499-1506
Glycoprotein D (gD) of Herpes simplex virus type 2 (HSV-2) is a key factor mediating the entry of HSV-2 into host cells. In order to explain the mechanism underlying the gD-mediated receptor-binding and viral entry, we performed a structural study on HSV-2 gD. The ectodomain of the gD protein encompassing residues 1 to 285 was expressed by baculovirus-infected insect cells as a secreted soluble protein with a C-terminal hexa-his tag. The protein was then purified by affinity and size-exclusion chromatography. The purified protein was successfully crystallized using the hanging-drop vapor-diffusion at 18 degrees C in a condition consisting of 0.1 mol/L Hepes pH 7.2, 5% (V/V) 2-methyl-2,4-pentanediol (MPD) and 10% PEG 10 000. The crystals diffracted to 1.8 angstroms resolution and belonged to space group P21, with unit-cell parameters alpha = 63.6, b = 55.4, c = 65.3 angstroms, beta = 96.3 degrees.
Animals
;
Baculoviridae
;
Crystallization
;
Crystallography, X-Ray
;
Herpesvirus 2, Human
;
chemistry
;
Insecta
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Viral Fusion Proteins
;
biosynthesis
;
chemistry
;
genetics