1.Effects of adenovirus-mediated shRNA down-regulates PTEN expression on fibril-binding proteins vinculin, filamin A and cortactin in activated hepatic stellate cells.
Li Sen HAO ; Jie SONG ; Ming Ting ZHANG ; Xiao Jie SONG ; Mei Yu JIANG ; Jing Xiu JI ; Yan Bo MO ; Jing WANG
Chinese Journal of Hepatology 2022;30(1):38-44
Objective: To investigate the effect of adenovirus-mediated shRNA down-regulating phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression on vinculin, filamin A, and cortactin in activated hepatic stellate cells (HSCs). Methods: Activated rats hepatic stellate cell line (HSC-T6) was cultured in vitro. Recombinant adenovirus Ad-shRNA/PTEN carrying PTEN targeted RNA interference sequence [short hairpin RNA (shRNA)] and empty control virus Ad-GFP were transfected into HSCs. The PTEN mRNA and protein expression of HSCs in each group were detected by real-time fluorescence quantitative PCR and Western blot. The expressional change of vinculin, filamin A and cortactin in HSCs of each group were detected by confocal laser scanning immunofluorescence microscope. Image-pro plus 6.0 software was used for image analysis and processing. The integrated optical density (IOD) of the fluorescence protein expression was measured. The experiment was divided into three groups: control group (DMEM instead of adenovirus solution in the adenovirus transfection step), Ad-GFP group (transfected with empty virus Ad-GFP only expressing green fluorescent protein), and Ad-shRNA/PTEN group (recombinant adenovirus Ad-shRNA/PTEN carrying shRNA targeting PTEN and expressing green fluorescent protein). One-way analysis of variance was used for comparison of mean value among the three groups, and LSD-test was used for comparison between the groups. Results: shRNA targeted PTEN was successfully transfected and the expression of PTEN mRNA and protein in HSC (P < 0.05) was significantly down-regulated. HSCs vinculin was mainly expressed in the cytoplasm. HSCs vinculin fluorescence IOD in the Ad-shRNA/PTEN group (19 758.83 ± 1 520.60) was higher than control (7 737.16 ± 279.93) and Ad-GFP group (7 725.50 ± 373.03) (P < 0.05), but there was no statistically significant difference between control group and Ad-GFP group (P > 0.05). There was no statistically significant difference in the fluorescence IOD of Filamin A among the three groups (P > 0.05), but the subcellular distribution of Filamin A among the three groups were changed. Filamin A in the Ad-shrNA /PTEN HSC group was mainly distributed in the cytoplasm. Filamin A HSC was mainly located in the nucleus.The filamin A HSC in the control group and Ad-GFP group was mainly located in the nucleus. The nucleocytoplasmic ratio of Filamin A in the AD-shrNA /PTEN group (0.60 ± 0.15) was significantly lower than control group (1.20 ± 0.15) and Ad-GFP group (1.08 ± 0.23), P < 0.05. but there was no statistically significant difference in filamin A nucleocytoplasmic ratio of HSC between the control group and the Ad-GFP group (P > 0.05). Cortactin HSCs in the three groups was mainly distributed in the cytoplasm. The cortactin fluorescence IOD of HSCs in the Ad-shRNA/PTEN group was significantly higher than control group (22 959.94 ± 1 710.42) and the Ad-GFP group (22 547.11 ± 1 588.72 ) (P < 0.05), while there was no statistically significant difference in the IOD of cortactin fluorescence in HSCs between the control group and the Ad-GFP group (P > 0.05). Conclusion: The down-regulation of PTEN expression raises the expression of microfilament-binding protein vinculin and cortactin, and changes the subcellular distribution of another microfilament binding protein filamin A, that is, translocation from nucleus to the cytoplasm in activated HSC in vitro.
Adenoviridae/metabolism*
;
Animals
;
Carrier Proteins
;
Cell Proliferation
;
Cortactin
;
Filamins/genetics*
;
Hepatic Stellate Cells/metabolism*
;
PTEN Phosphohydrolase/metabolism*
;
RNA, Small Interfering/genetics*
;
Rats
;
Vinculin/genetics*
2.Differential gene expression profiling for identification of potential pathogenic genes and pathways in carotid unstable plaques.
Wenqing NAI ; Hao LIU ; Yuanyuan WANG ; Lanlan SHAN ; You FU ; Hongyuan WU ; Yan DING ; Shunzhi CHEN ; Zhengjun LIU ; Jie CHEN ; Meng DAI
Journal of Southern Medical University 2015;35(5):738-742
OBJECTIVETo explore the molecular mechanism in the formation of unstable plaques.
METHODSThe cDNA microarray E-MTAB-2055 was downloaded from ArrayExpress database to screen the differentially expressed genes in 24 ruptured plaques against 24 stable plaques. Functional enrichment analysis was conducted to define the biological processes and pathways involved in disease progression. The protein-protein interaction network was constructed to identify the risk modules with close interactions. Five pairs of carotid specimens were used to validate 3 differentially expressed genes of the risk modules by real-time PCR.
RESULTSA total of 439 genes showed differential expression in our analysis, including 232 up-regulated and 207 down-regulated genes according to the data filter criteria. Immune-related biological processes and pathways were greatly enriched. The protein-protein interaction network and module analysis suggested that TYROBP, VCL and CXCR4 might play critical roles in the development of unstable plaques, and differential expressions of CXCR4 and TYROBP in carotid plaques were confirmed by real-time PCR.
CONCLUSIONOur study shows the differential gene expression profile, potential biological processes and signaling pathways involved in the process of plaque rupture. TYROBP may be a new candidate disease gene in the pathogenesis of unstable plaques.
Adaptor Proteins, Signal Transducing ; genetics ; Disease Progression ; Down-Regulation ; Gene Expression Profiling ; Humans ; Membrane Proteins ; genetics ; Oligonucleotide Array Sequence Analysis ; Plaque, Atherosclerotic ; genetics ; Protein Interaction Maps ; Real-Time Polymerase Chain Reaction ; Receptors, CXCR4 ; genetics ; Transcriptome ; Up-Regulation ; Vinculin ; genetics
3.Identification of genes expressed during myocardial development.
Siu Yuen CHAN ; Anthony Kin Wang CHAN ; Becky Pik Ki CHEUNG ; Ying LIANG ; Maurice Ping LEUNG
Chinese Medical Journal 2003;116(9):1329-1332
OBJECTIVETo identify genes expressed in the fetal heart that are potentially important for myocardial development and cardiomyocyte proliferation.
METHODSmRNAs from fetal (29 weeks) and adult cardiomyocytes were use for suppression subtractive hybridization (SSH). Both forward (fetal as tester) and reverse (adult as driver) subtractions were performed. Clones confirmed by dot-blot analysis to be differentially expressed were sequenced and analyzed.
RESULTSDifferential expressions were detected for 39 out of 96 (41%) clones on forward subtraction and 24 out of 80 (30%) clones on reverse. For fetal dominating genes, 28 clones matched to 10 known genes (COL1A2, COL3A1, endomucin, HBG1, HBG2, PCBP2, LOC51144, TGFBI, vinculin and PND), 9 clones to 5 cDNAs of unknown functions (accession AK021715, AF085867, AB040948, AB051460 and AB051512) and 2 clones had homology to hEST sequences. For the reverse subtraction, all clones showed homology to mitochondrial transcripts.
CONCLUSIONSWe successfully applied SSH to detect those genes differentially expressed in fetal cardiac myocytes, some of which have not been shown relative to myocardial development.
Aged ; Cells, Cultured ; Collagen ; Collagen Type I ; Collagen Type III ; genetics ; DNA-Binding Proteins ; genetics ; Forkhead Transcription Factors ; Gene Expression ; physiology ; Heart ; embryology ; growth & development ; Heterogeneous-Nuclear Ribonucleoproteins ; genetics ; Humans ; Nerve Tissue Proteins ; genetics ; Nucleic Acid Hybridization ; RNA-Binding Proteins ; Transcription Factors ; Transforming Growth Factor beta ; genetics ; Transforming Growth Factor beta1 ; Vinculin ; genetics
4.Tanshinone II a protects against lipopolysaccharides-induced endothelial cell injury via Rho/Rho kinase pathway.
Wei LI ; Wei SUN ; Chuan-hua YANG ; Hong-zhen HU ; Yue-hua JIANG
Chinese journal of integrative medicine 2014;20(3):216-223
OBJECTIVETo test whether tanshinone II A (Tan II A), a highly valued herb derivative to treat vascular diseases in Chinese medicine, could protect endothelial cells from bacterial endotoxin (lipopolysaccharides, LPS)-induced endothelial injury.
METHODSEndothelial cell injury was induced by treating human umbilical vein endothelial cells (HUVECs) with 0.2 μg/mL LPS for 24 h. Y27632 and valsartan were used as positive controls. The effects of tanshinone II A on the LPS-induced cell viability and apoptosis rate of HUVECs were tested by flow cytometry, cell migration by transwell, adhesion by a 96-well plate pre-coated with vitronectin and cytoskeleton reorganization by immunofluorescence assay. Rho/Rho kinase (ROCK) pathway-associated gene and protein expression were examined by microarray assay; quantitative real-time polymerase chain reaction and Western blotting were used to confirm the changes observed by microarray.
RESULTSTan II A improved cell viability, suppressed apoptosis and protected cells from LPS-induced reductions in cell migration and adhesion at a comparable magnitude to that of Y27632 and valsartan. Tan II A, Y27632 and valsartan also normalized LPS-induced actomyosin contraction and vinculin protein aggregation. A microarray assay revealed increased levels of fibronectin, integrin A5 (ITG A5), Ras homolog gene family member A (RhoA), myosin light chain phosphatase, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K, or PIP2 in Western blotting), focal adhesion kinase, vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in the damaged HUVECs, which were attenuated to different degrees by Tan II A, Y27632 and valsartan.
CONCLUSIONTan II A exerted a strong protective effect on HUVECs, and the mechanism was caused, at least in part, by a blockade in the Rho/ROCK pathway, presumably through the down-regulation of ITG A5.
Apoptosis ; drug effects ; Cell Adhesion ; drug effects ; Cell Movement ; drug effects ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; Cytoprotection ; drug effects ; Cytoskeleton ; drug effects ; metabolism ; Diterpenes, Abietane ; chemistry ; pharmacology ; Down-Regulation ; drug effects ; genetics ; Human Umbilical Vein Endothelial Cells ; drug effects ; enzymology ; pathology ; Humans ; Integrin alphaV ; metabolism ; Lipopolysaccharides ; Myosin Light Chains ; metabolism ; Oligonucleotide Array Sequence Analysis ; Phosphatidylinositol 4,5-Diphosphate ; metabolism ; Protective Agents ; pharmacology ; Signal Transduction ; drug effects ; Up-Regulation ; drug effects ; genetics ; Vinculin ; metabolism ; rho GTP-Binding Proteins ; metabolism ; rho-Associated Kinases ; metabolism