1.Endovascular treatment for anterior inferior cerebellar artery-posterior inferior cerebellar artery (AICA-PICA) common trunk variant aneurysms: Technical note and literature review
Jerry C. KU ; Vishal CHAVDA ; Paolo PALMISCIANO ; Christopher R. PASARIKOVSKI ; Victor X.D. YANG ; Ruba KIWAN ; Stefano M. PRIOLA ; Bipin CHAURASIA
Journal of Cerebrovascular and Endovascular Neurosurgery 2023;25(4):452-461
The Anterior Inferior Cerebellar Artery-Posterior Inferior Cerebellar Artery (AICA-PICA) common trunk is a rare variant of cerebral posterior circulation in which a single vessel originating from either the basilar or vertebral arteries supplies both cerebellum and brainstem territories. We present the first case of an unruptured right AICA-PICA aneurysm treated with flow diversion using a Shield-enhanced pipeline endovascular device (PED, VANTAGE Embolization Device with Shield Technology, Medtronic, Canada). We expand on this anatomic variant and review the relevant literature.A 39-year-old man presented to our treatment center with vertigo and right hypoacusis. The initial head CT/CTA was negative, but a 4-month follow-up MRI revealed a 9 mm fusiform dissecting aneurysm of the right AICA. The patient underwent a repeat head CTA and cerebral angiogram, which demonstrated the presence of an aneurysm on the proximal portion of an AICA-PICA anatomical variant. This was treated with an endovascular approach that included flow diversion via a PED equipped with Shield Technology. The patient’s post-procedure period was uneventful, and he was discharged home after two days with an intact neurological status. The patient is still asymptomatic after a 7-month follow-up, with MR angiogram evidence of stable aneurysm obliteration and no ischemic lesions.Aneurysms of the AICA-PICA common trunk variants have a high morbidity risk due to the importance and extent of the territory vascularized by a single vessel. Endovascular treatment with flow diversion proved to be both safe and effective in obliterating unruptured cases.
2.Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides.
Tingting LIN ; Ergang LIU ; Huining HE ; Meong Cheol SHIN ; Cheol MOON ; Victor C YANG ; Yongzhuo HUANG
Acta Pharmaceutica Sinica B 2016;6(4):352-358
Brain delivery of macromolecular therapeutics (e.g., proteins) remains an unsolved problem because of the formidable blood-brain barrier (BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine (LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP) have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP-proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.
3.Tat-functionalized Ag-FeO nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery.
Ergang LIU ; Meng ZHANG ; Hui CUI ; Junbo GONG ; Yongzhuo HUANG ; Jianxin WANG ; Yanna CUI ; Weibing DONG ; Lu SUN ; Huining HE ; Victor C YANG
Acta Pharmaceutica Sinica B 2018;8(6):956-968
In this paper, we prepared a dual functional system based on dextrin-coated silver nanoparticles which were further attached with iron oxide nanoparticles and cell penetrating peptide (Tat), producing Tat-modified Ag-FeO nanocomposites (Tat-FeAgNPs). To load drugs, an -SH containing linker, 3-mercaptopropanohydrazide, was designed and synthesized. It enabled the silver carriers to load and release doxorubicin (Dox) in a pH-sensitive pattern. The delivery efficiency of this system was assessed using MCF-7 cells, and using null BalB/c mice bearing MCF-7 xenograft tumors. Our results demonstrated that both Tat and externally applied magnetic field could promote cellular uptake and consequently the cytotoxicity of doxorubicin-loaded nanoparticles, with the IC of Tat-FeAgNP-Dox to be 0.63 µmol/L. The delivery efficiency of Tat-FeAgNP carrying Cy5 to the mouse tumor was analyzed using the optical imaging tests, in which Tat-FeAgNP-Cy5 yielded the most efficient accumulation in the tumor (6.7±2.4% ID of Tat-FeAgNPs). Anti-tumor assessment also demonstrated that Tat-FeAgNP-Dox displayed the most significant tumor-inhibiting effects and reduced the specific growth rate of tumor by 29.6% ( = 0.009), which could be attributed to its superior performance in tumor drug delivery in comparison with the control nanovehicles.