1.Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium.
Wen-Cheng ZHANG ; Yuan-Ming LU ; Huai-Zhang YANG ; Peng-Tao XU ; Hui CHANG ; Zhi-Bin YU
Acta Physiologica Sinica 2013;65(2):143-148
One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.
Animals
;
Atrial Natriuretic Factor
;
metabolism
;
Heart Ventricles
;
metabolism
;
Myocardium
;
metabolism
;
Rats
;
SNARE Proteins
;
metabolism
;
Vesicle-Associated Membrane Protein 1
;
metabolism
;
Vesicle-Associated Membrane Protein 2
;
metabolism
;
Weightlessness Simulation
2.Association of VAMP-2 and Syntaxin 1A Genes with Adult Attention Deficit Hyperactivity Disorder.
Aye Nur Inci KENAR ; Ozlem Izci AY ; Hasan HERKEN ; Mehmet Emin ERDAL
Psychiatry Investigation 2014;11(1):76-83
OBJECTIVE: The etiology of attention deficit hyperactivity disorder (ADHD) has not been entirely clarified yet. Structural and metabolic differences at the prefrontal striatal cerebellary system and the interaction of gene and environment are the main factors that thought to play roles in the etiology. Genetic investigations are performed especially about the dopamine pathways and receptors. In this study; it was aimed to investigate the association of the synaptobrevin-2 (VAMP-2) gene Ins/Del polymorphism and syntaxin 1A gene intron 7 polymorphism, which take place in encoding presynaptic protein, with adult ADHD. METHODS: One hundred thirty-nine patients, having ADHD aging between 18 and 60 years and 106 healthy people as controls were included into the study. DNA samples were extracted from whole blood and genetic analysis were performed. RESULTS: A significant difference was determined between ADHD and VAMP-2 Ins/Del polymorphism and syntaxin 1A intron 7 polymorphism according to the control group. These polymorphisms were found not to be associated with subtypes of ADHD. CONCLUSION: It is supposed that synaptic protein genes together with dopaminergic genes might have roles in the etiology of ADHD.
Adult*
;
Aging
;
Attention Deficit Disorder with Hyperactivity*
;
DNA
;
Dopamine
;
Humans
;
Introns
;
Qa-SNARE Proteins*
;
Syntaxin 1*
;
Vesicle-Associated Membrane Protein 2*
3.Effect of Rhodiola Sachalinensis Administration and Endurance Exercise on Insulin Sensitivity and Expression of Proteins Related with Glucose Transport in Skeletal Muscle of Obese Zucker Rat.
Jae Keun OH ; Young Oh SHIN ; Hee Jung JUNG ; Jung Eun LEE
The Korean Journal of Nutrition 2006;39(4):323-330
Peripheral insulin resistance in obese/type II diabetes animals results from an impairment of insulin-stimulated glucose uptake into skeletal muscle. Insulin stimulate the translocation of GLUT4 from intracellular location to the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) is implicated in mediation of fusion of GLUT4-containing vesicle with the plasma membrane. Present study investigated regulatory effects of Rhodiola sachalinensis administration and exercise training on the expression of GLUT4 protein and SNAREs protein in skeletal muscles of obese Zucker rats. Experimental animals were randomly assigned into one of five groups ; lean control (LN), obese control (OB), exercise-treated (EXE), Rhodiola sachalinensis-treated (Rho), combine of Rho & EXE (Rho-EXE). All animals of exercise training (EXE, Rho-EXE) performed treadmill running for 8 weeks, and animals of Rho groups (Rho, Rho-EXE) were dosed daily by gastric gavage during the same period. After experiment, blood were taken for analyses of glucose, insulin, and lipids levels. Mitochondrial oxidative enzyme (citrate synthase, CS ; beta-hydroxyacyl-CoA dehydrogenase, beta-HAD) activity were analysed. Skeletal muscles were dissected out for analyses of proteins (GLUT4, VAMP2, syntaxin4, SNAP23). Results are as follows. Exercise and/or Rhodiola sachalinensis administration significantly reduced body weight and improved blood lipids (TG, FFA), and increased insulin sensitivity. Endurance exercise significantly increased the activity of mitochondrial enzymes and the expression of GLUT4 protein, however, administration of Rhodiola sachalinensis did not affect them. The effect of exercise and/or Rhodiola sachalinensis administration on the expression of SNARE proteins was unclear. Our study suggested that improvement insulin sensitivity by exercise and/or Rhodiola sachalinensis administration in obese Zucker rats is independent of expression of SNARE proteins.
Animals
;
Body Weight
;
Cell Membrane
;
Glucose Transporter Type 4
;
Glucose*
;
Insulin Resistance*
;
Insulin*
;
Muscle, Skeletal*
;
Negotiating
;
Obesity
;
Oxidoreductases
;
Rats*
;
Rats, Zucker
;
Rhodiola*
;
Running
;
SNARE Proteins
;
Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins
;
Vesicle-Associated Membrane Protein 2
4.Observation of insulin exocytosis by a pancreatic β cell line with total internal reflection fluorescence microscopy.
Zhao-ying FU ; Ya-ping WANG ; Yu CHEN
Chinese Medical Sciences Journal 2011;26(1):60-63
Animals
;
Exocytosis
;
drug effects
;
physiology
;
Glucose
;
pharmacology
;
Insulin
;
secretion
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
methods
;
Potassium
;
pharmacology
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Vesicle-Associated Membrane Protein 2
;
genetics
;
metabolism
5.LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.
Hye Jin YUN ; Joohyun PARK ; Dong Hwan HO ; Heyjung KIM ; Cy Hyun KIM ; Hakjin OH ; Inhwa GA ; Hyemyung SEO ; Sunghoe CHANG ; Ilhong SON ; Wongi SEOL
Experimental & Molecular Medicine 2013;45(8):e36-
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Amino Acid Sequence
;
Animals
;
Exocytosis
;
Female
;
HEK293 Cells
;
Humans
;
Mice
;
Molecular Sequence Data
;
Mutant Proteins/metabolism
;
Phosphorylation
;
Phosphothreonine/metabolism
;
Protein Binding
;
Protein Interaction Mapping
;
Protein Structure, Tertiary
;
Protein-Serine-Threonine Kinases/*metabolism
;
Qa-SNARE Proteins/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Synaptosomal-Associated Protein 25/*metabolism
;
Synaptotagmins/metabolism
;
Vesicle-Associated Membrane Protein 2/metabolism
;
Vesicular Transport Proteins/chemistry/*metabolism