1. Sang-Yod rice bran hydrolysates alleviate hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in nitric oxide deficient hypertensive rats
Gulladawan JAN-ON ; Akarachai TUBSAKUL ; Weerapon SANGARTIT ; Poungrat PAKDEECHOTE ; Upa KUKONGVIRIYAPAN ; Gulladawan JAN-ON ; Veerapol KUKONGVIRIYAPAN ; Ketmanee SENAPHAN ; Chakree THONGRAUNG
Asian Pacific Journal of Tropical Biomedicine 2021;11(1):10-19
Objective: To evaluate the potential therapeutic effect of Sang-Yod rice bran hydrolysates (SRH) and in combination with lisinopril against hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in rats with nitric oxide deficiency-induced hypertension. Methods: Hypertension was induced in male Sprague-Dawley rats by administration of a nitric oxide synthase inhibitor, Nω- nitro-L-arginine methyl ester (L-NAME) in drinking water for 6 weeks. Hypertensive rats were administered daily with SRH (500 mg/kg/day), lisinopril (1 mg/kg/day), or the combination of SRH and lisinopril by gastric lavage for the last 3 weeks of L-NAME treatment. Hemodynamic status, vascular reactivity to vasoactive agents, and vascular remodeling were assessed. Blood and aortic tissues were collected for measurements of oxidative stress markers, plasma angiotensin-converting enzyme (ACE) activity, plasma angiotensin II, and protein expression. Results: L-NAME induced remarkable hypertension and severe oxidative stress, and altered contents of smooth muscle cells, elastin, and collagen of the aortic wall. SRH or lisinopril alone reduced blood pressure, restored endothelial function, decreased plasma ACEs and angiotensin II levels, alleviated oxidant markers and glutathione redox status, and restored the vascular structure. The effects were associated with increased expression of endothelial nitric oxide synthase and decreased expression of gp91phox and AT1R expression. The combination of SRH and lisinopril was more effective than monotherapy. Conclusions: SRH alone or in combination with lisinopril exert an antihypertensive effect and improve endothelial function and vascular remodeling through reducing oxidative stress and suppressing elevated renin-angiotensin system.
2. Rice bran hydrolysates induce immunomodulatory effects by suppression of chemotaxis, and modulation of cytokine release and cell-mediated cytotoxicity
Suphanthip PHUSRISOM ; Laddawan SENGGUNPRAI ; Auemduan PRAWAN ; Sarinya KONGPETCH ; Veerapol KUKONGVIRIYAPAN ; Upa KUKONGVIRIYAPAN ; Supawan THAWORNCHINSOMBUT ; Ronnachai CHANGSRI
Asian Pacific Journal of Tropical Biomedicine 2020;10(10):470-478
Objective: To evaluate the immunomodulatory effects of rice bran hydrolysates on cultured immune cells and their underlying mechanism. Methods: Rice bran hydrolysates were prepared from pigmented rice (Oryza sativa L.) by hydrothermolysis and protease digestion. Rice bran hydrolysates were assayed for phenolic content and antioxidant activity. Cell proliferation of Jurkat, THP-1 and peripheral blood mononuclear cells (PBMC) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Chemotaxis was evaluated by transwell chamber methods. Immunoadherence of THP-1 was performed on cultured human umbilical vein endothelial cells (HUVEC). Cytokine released from PBMC was measured by ELISA assay kits. Lymphocyte-mediated cytotoxicity was carried out on KKU-452 cells. Proteins associated with immunomodulation were analyzed by Western immunoblotting assay. Results: Rice bran hydrolysates were rich in phenolic compounds, such as ferulic acid, catechin, quercetin, and quercetin glycosides. Rice bran hydrolysates suppressed phytohemagglutinin (PHA)- stimulated proliferation of PBMC and Jurkat cells, chemotaxis of Jurkat and THP-1 cells, and immunoadherence of THP-1 on HUVEC cultured cells. The cellular mechanism of rice bran hydrolysates involved the activation of AMPK as well as suppression of mTOR, NF-κB and VCAM-1. Rice bran hydrolysates potentiated PBMC on the PHA-stimulated release of IL-2, TNF-α, and IL-4, and enhanced PHA-induced non-MHC-restricted cytotoxicity on KKU-452 cancer cells. Conclusions: The immunomodulatory effect of phytochemicals derived from rice bran hydrolysates suggests its therapeutic potential for further investigation.
3. Anti-tumor activity of rice bran hydrolysates on migration, invasion and angiogenesis
Suphanthip PHUSRISOM ; Laddawan SENGGUNPRAI ; Auemduan PRAWAN ; Sarinya KONGPETCH ; Veerapol KUKONGVIRIYAPAN ; Upa KUKONGVIRIYAPAN ; Supawan THAWORNCHINSOMBUT ; Sirithon SIRIAMORNPUN ; Theeraphan CHUMROENPHAT ; Ronnachai CHANGSRI
Asian Pacific Journal of Tropical Biomedicine 2021;11(7):317-326
Objective: To investigate anti-tumor effect of rice bran hydrolysates (RBH) on proliferation, migration, invasion, and angiogenesis of cholangiocarcinoma (CCA) cells, and elucidate the underlying mechanisms. Methods: RBH was prepared from Tubtim Chumprae rice (Oryza sativa L.) by hydrothermolysis followed by protease digestion. Phenolic content in RBH was analyzed by high-performance liquid chromatography. Human CCA cells, KKU-156, KKU-452, and KKU-100, were used to study the effects of RBH on proliferation, migration, invasion, and adhesion by wound healing, Transwell chamber, and fibronectin cell adhesion assays. Angiogenesis was evaluated using human umbilical vein endothelial cells. Proteins associated with cancer progression were analyzed by immunobloting assays. Results: RBH contained carbohydrates, proteins, lipids, and various phenolic compounds and flavonoids. RBH did not inhibit CCA proliferation, but strongly suppressed migration, invasion, adhesion of CCA cells, and the formation of tube-like capillary structures of human umbilical vein endothelial cells. Moreover, RBH down-regulated phosphorylation of FAK, PI3K, and Akt, suppressed NF-κB nuclear translocation, decreased the expression of ICAM-1, vimentin and vascular endothelium growth factor (VEGF), and increased the expression of E-cadherin. Conclusions: RBH suppresses CCA cell migration and invasion and decreases expression of proteins involved in cancer metastasis. RBH is a potential food supplement for cancer prevention.