1.Mechanism of Bushen Huoxue Formula in regulating endometrial oxidative stress and fibrosis.
Si-Si TANG ; Rong CHEN ; Qian-Qian SONG
China Journal of Chinese Materia Medica 2025;50(1):218-236
Intrauterine adhesion(IUA) is a common gynecological disease that is difficult to treat, and there is a lack of specific effective drugs and measures to prevent endometrial fibrosis. In this study, the mechanism of endometrial oxidative stress and fibrosis regulation was studied in an IUA rat model constructed by Bushen Huoxue Formula intervention of mechanical injury combined with infection. A total of 72 SPF SD female rats aged 8-10 weeks were randomly divided into blank control group, model control group, low-dose, medium-dose, and high-dose groups of Bushen Huoxue Formula, and estrogen groups. The rats in the estrous cycle of the model control group and the positive control group were simulated with surgical injury and infection, and the sham operation group was treated with on-off abdominal treatment. After successful modeling, the model control group was administered intragastrically with purified water of 15 μL·g~(-1) every day. The low-dose group was administered intragastrically with Bushen Huoxue Formula of 7.8 g·kg~(-1); the medium-dose group was administered intragastrically with Bushen Huoxue Formula of 15.6 g·kg~(-1), and the high-dose group was administered intragastrically with Bushen Huoxue Formula of 31.2 g·kg~(-1). The estrogen group was administered intragastrically with estradiol valerate of 4.2 mg·kg~(-1). After continuous intervention for 28 days, all rats were deprived of water and killed to collect blood and tissue. Hematoxylin-eosin(HE) staining calculated the number of uterine glands; Masson staining calculated the area of uterine collagen fibers. Combined with HE and Masson staining, semi-quantitative scores were performed on the degree of endometrial fibrosis. Immunohistochemistry was performed to detect the vascular endothelial growth factor(VEGF), stromal cell-derived factor-1(SDF-1), and transforming growth factor-β1(TGF-β1) expression in rats' uterine tissue. Enzyme-linked immunosorbent assay(ELISA) dected angiopoietin 1(IFN-γ), interleukin-1α(IL-1α), TGF-β1, tumor necrosis factor-α(TNF-α), collagen type Ⅳ(Ⅳ-Col), leukemia inhibitory factor(LIF), superoxide dismutase(SOD)、glutathione peroxidase(GSH-Px);The mRNA expressions of Smad2, Smad3, adisintegrin and metalloproteinase(ADAM17) and TGF-β1 were determined by qPCR. Notch and ADAM17 protein expression in rat uterus were determined by Western blot. The results showed that the area of uterine fibrosis was significantly reduced and the conditions of edema and adhesion were effectively alleviated after high-dose intervention of Bushen Huoxue Formula. The levels of inflammatory factors and Ⅳ-Col were significantly decreased, and the levels of LIF and antioxidant enzymes were significantly increased. The mRNA expressions of Smad2, Smad3, ADAM17 and TGF-β1 were significantly down-regulated. Immunohistochemical results showed that Bushen Huoxu Formula could effectively increase the positive expression of SDF-1 and reduce the positive expression of VEGF and TGF-β1. Western blot results showed that the protein expressions of Notch and ADAM17 in high-dose, medium-dose and low-dose of Bushen Huoxu Formula groups were significantly down-regulated in a dose-dependent manner. These results suggest that Bushen Huoxue Formula may inhibit fibrosis process through ADAM17/Notch signaling pathway, suggesting that Bushen Huoxuet Formula is one of the potential therapeutic methods for IUA.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Endometrium/pathology*
;
Rats
;
Fibrosis/metabolism*
;
Oxidative Stress/drug effects*
;
Humans
;
Uterine Diseases/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
2.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
3.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
4.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
5.FGF19 alleviates inflammatory injury in vascular endothelial cells by activating the Nrf2/HO-1 signaling pathway.
Yan-Jun ZHANG ; Fei-Fei XIAO ; Xiao-Hua LI ; Shen-Hua TANG ; Yi SANG ; Chao-Yue LIU ; Jian-Chang LI
Chinese Journal of Contemporary Pediatrics 2025;27(5):601-608
OBJECTIVES:
To investigate the role and mechanism of fibroblast growth factor (FGF) 19 in inflammation-induced injury of vascular endothelial cells caused by high glucose (HG).
METHODS:
Human umbilical vein endothelial cells (HUVECs) were randomly divided into four groups: control, HG, FGF19, and HG+FGF19 (n=3 each). The effect of different concentrations of glucose and/or FGF19 on HUVEC viability was assessed using the CCK8 assay. Flow cytometry was utilized to examine the impact of FGF19 on HUVEC apoptosis. Levels of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were measured by ELISA. Real-time quantitative PCR and Western blotting were used to determine the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), nuclear factor erythroid 2 related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Cells were further divided into control, siRNA-Nrf2 (siNrf2), HG, HG+FGF19, HG+FGF19+negative control, and HG+FGF19+siNrf2 groups (n=3 each) to observe the effect of FGF19 on oxidative stress injury in HUVECs induced by high glucose after silencing the Nrf2 gene.
RESULTS:
Compared to the control group, the HG group exhibited increased apoptosis rate, increased IL-6, iNOS and MDA levels, and increased VEGF mRNA and protein expression, along with decreased T-SOD activity and decreased mRNA and protein expression of Nrf2 and HO-1 (P<0.05). Compared to the HG group, the HG+FGF19 group showed reduced apoptosis rate, decreased IL-6, iNOS and MDA levels, and decreased VEGF mRNA and protein expression, with increased T-SOD activity and increased Nrf2 and HO-1 mRNA and protein expression (P<0.05). Compared to the HG+FGF19+negative control group, the HG+FGF19+siNrf2 group had decreased T-SOD activity and increased MDA levels (P<0.05).
CONCLUSIONS
FGF19 can alleviate inflammation-induced injury in vascular endothelial cells caused by HG, potentially through the Nrf2/HO-1 signaling pathway.
Humans
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Fibroblast Growth Factors/pharmacology*
;
Heme Oxygenase-1/physiology*
;
Apoptosis/drug effects*
;
Glucose
;
Inflammation
;
Interleukin-6/analysis*
;
Vascular Endothelial Growth Factor A/genetics*
;
Nitric Oxide Synthase Type II/analysis*
;
Cells, Cultured
6.Anti-early antigen Epstein-Barr virus titer and atherosclerosis in relation to vascular endothelial growth factor (VEGF) polymorphism rs3025039 among older Japanese individuals.
Yuji SHIMIZU ; Hirotomo YAMANASHI ; Shin-Ya KAWASHIRI ; Yuko NOGUCHI ; Nagisa SASAKI ; Seiko NAKAMICHI ; Kazuhiko ARIMA ; Yasuhiro NAGATA ; Takahiro MAEDA
Environmental Health and Preventive Medicine 2025;30():83-83
BACKGROUND:
Epstein-Barr (EB) virus infection stimulates the production of vascular endothelial growth factor (VEGF), which contributes to the progression of angiogenesis. Angiogenesis plays an important role in the development of atherosclerosis. Since serum anti-early antigen EB virus IgG (EBV EA-IgG) titer is a sign of active EB virus infection, EBV EA-IgG titer could be associated with atherosclerosis. The number of minor (T) alleles in VEGF polymorphism rs3025039 has been reported to be inversely associated with serum VEGF concentration, suggesting that rs3025039 might have a strong influence on the association between EBV EA-IgG titer and atherosclerosis. By focusing on the role of VEGF in the development of atherosclerosis, this study aimed to investigate the association between active EB virus infection and atherosclerosis.
METHODS:
A cross-sectional study of 2,661 older Japanese individuals aged 60-89 years who participated in annual health check-ups during 2017-2019 was conducted. Logistic regression was used to evaluate the association between EBV EA-IgG titer and atherosclerosis in relation to rs3025039 genotype. The influence of rs3025039 (T) allele carrier status on the association between EBV EA-IgG titer and atherosclerosis was also evaluated by using logistic regression.
RESULTS:
Among rs3025039 CC-homozygotes, with the lowest EBV EA-IgG titer tertile as the reference, the multivariable odds ratio (95% confidence interval) was 1.11 (0.82, 1.50) for the medium tertile and 1.07 (0.78, 1.47) for the high tertile. Among rs3025039 (T) allele carriers, the corresponding values were 1.44 (0.88, 2.36) and 1.88 (1.15, 3.05), respectively. There was a significant interaction between rs3025039 (T) allele carrier status and the association between EBV EA-IgG titer and atherosclerosis (adjusted p = 0.0497).
CONCLUSION
EBV EA-IgG titer was significantly positively associated with atherosclerosis only among participants who are genetically less likely to have progressive angiogenesis. An angiogenesis-related genetic factor was revealed as a determinant of the association between EBV EA-IgG titer and atherosclerosis. These findings introduce a novel concept that could explain the association between viral infection and atherosclerosis.
Humans
;
Aged
;
Male
;
Middle Aged
;
Female
;
Japan/epidemiology*
;
Atherosclerosis/virology*
;
Aged, 80 and over
;
Vascular Endothelial Growth Factor A/genetics*
;
Epstein-Barr Virus Infections/virology*
;
Polymorphism, Single Nucleotide
;
Cross-Sectional Studies
;
Herpesvirus 4, Human
;
Antigens, Viral/immunology*
;
Antibodies, Viral/blood*
;
Immunoglobulin G/blood*
;
Genotype
;
East Asian People
7.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*
8.Xinfeng Capsule alleviates RA-FLS-induced angiogenesis in HUVEC cells by inhibiting the lncRNA HOTAIR/PI3K/AKT pathway.
Feifei LIU ; Yuan WANG ; Jian LIU ; Chuanbing HUANG ; Dan HUANG ; Yanqiu SUN
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1057-1066
Objective To investigate the effect of serum containing Xinfeng capsule (XFC) on the angiogenesis of human umbilical vein endothelial cells (HUVEC) induced by rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its mechanism of action. Methods An in vitro co-culture model of RA-FLS and HUVEC was established. Serum containing XFC was prepared by oral gavage of SD rats. CCK-8 was used to screen the optimal co-culture ratio and XFC serum concentration. The lncRNA HOTAIR overexpression plasmid (pcDNA3.1-lncRNA HOTAIR), along with the negative control group, were constructed and transfected into RA-FLS. The experiments were done in HUVEC control group, model group (co-culture of HUVEC and RA-FLS), XFC group (co-culture of RA-FLS treated with 200 mL/L XFC), HOTAIR negative control group (co-culture of RA-FLS transfected with pcDNA3.1-NC), HOTAIR overexpression group (co-culture of RA-FLS transfected with pcDNA3.1-lncRNA HOTAIR), and XFC-treated HOTAIR overexpression group (co-culture of RA-FLS transfected with pcDNA3.1-lncRNA HOTAIR and treated with 200 mL/L XFC). The proliferation ability of HUVEC was detected by CCK-8 method. The migration ability of HUVEC was detected by TranswellTM method. The tube formation ability of HUVEC was detected by tubule formation assay. The expression of CD34 and CD105 in HUVEC was detected by flow cytometry. The expressions of lncRNA HOTAIR, miR-126-3p, phosphatidylinositol 3-kinase (PI3K), PI3K receptor 2 (PIK3R2), AKT, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) mRNA in HUVEC were detected by real-time quantitative PCR. The protein expressions of PI3K, AKT, p-AKT, VEGF, and bFGF in HUVEC were detected by Western blot and immunofluorescence technique. Results The results of CCK-8 method showed that the optimal treatment ratio and time of RA-FLS and HUVEC co-culture were 5:1 and 48 h respectively. The optimal intervention concentration and time of XFC were 200 mL/L and 48 h. Compared with the control group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVEC in the model group were significantly improved, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly upregulated, and miR-126-3p was significantly downregulated. Compared with the model group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVEC in the XFC group were significantly decreased, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly downregulated, while the expression of miR-126-3p was significantly upregulated. Compared with the HOTAIR negative control group, in the HOTAIR overexpression group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVECs were significantly increased, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly upregulated, and the expression of miR-126-3p was significantly downregulated. Compared with the HOTAIR overexpression group, the proliferation, migration, tube-forming ability and CD34 and CD105 levels of HUVECs in the HOTAIR overexpression group treated with XFC were significantly downregulated, the expressions of lncRNA HOTAIR, PIK3R2, VEGF, bFGF, PI3K, AKT and p-AKT were significantly downregulated, and the expression of miR-126-3p was significantly upregulated. Conclusion XFC-containing serum may play a therapeutic role by inhibiting the expression of lncRNA HOTAIR/PI3K/AKT pathway, reducing the expression levels of VEGF and bFGF, and alleviating synovial angiogenesis induced by RA-FLS to exert therapeutic effect.
RNA, Long Noncoding/metabolism*
;
Humans
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Animals
;
Signal Transduction
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Rats, Sprague-Dawley
;
Neovascularization, Pathologic/metabolism*
;
Coculture Techniques
;
Cell Proliferation/genetics*
;
Fibroblasts/metabolism*
;
Vascular Endothelial Growth Factor A/genetics*
;
Male
;
Cells, Cultured
;
Capsules
;
Angiogenesis
9.Mechanism of Chaenomelis Fructus in treatment of rheumatoid arthritis based on network pharmacology and experimental verification.
Zhi-Hao DUAN ; Can JIN ; Ying DENG ; Jin-Lang LIU ; Jie WANG ; Shi-Gang LI ; You ZHOU
China Journal of Chinese Materia Medica 2023;48(18):4852-4863
The material basis and mechanism of Chaenomelis Fructus in the treatment of rheumatoid arthritis(RA) were explored by network pharmacology, and the potential anti-RA targets of Chaenomelis Fructus were verified by molecular docking and animal experiments. The active components and targets of Chaenomelis Fructus were searched against the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. GeneCards, DisGeNET, and OMIM were used to obtain RA-related targets. The common targets shared by Chaenomelis Fructus and RA were considered as the potential targets of Chaenomelis Fructus in the treatment of RA. Cytoscape 3.9.0 was employed to establish a "traditional Chinese medicine-active component-common target-disease" network. The protein-protein interaction(PPI) network was established by STRING, and the core genes were visualized by RStudio 4.1.0. DAVID was used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict and visualize the involved signaling pathways. Molecular docking was carried out with the active components screened out as ligands and RA core genes as the targets. Finally, the prediction results were verified by animal experiments. Four main active components of Chaenomelis Fructus were obtained, which corresponded to 137 targets. Chaenomelis Fructus and RA shared 37 common targets. GO annotation yielded 239 terms(P<0.05), and KEGG pathway enrichment analysis screened out 94 signaling pathways(P<0.05), mainly involving interleukin-17(IL-17), tumor necrosis factor, Toll-like receptor, and nuclear factor-kappa B(NF-κB) signaling pathways. Molecular docking results showed that the main active components of Chaenomelis Fructus bound well with the core targets of RA. The results of animal experiments proved that Chaenomelis Fructus can alleviate joint swelling in the mice with RA. The results of ELISA showed that Chaenomelis Fructus lowered the levels of interleukin-6(IL-6) and interleukin-1β(IL-1β). Western blot showed that Chaenomelis Fructus down-regulated the protein level of vascular endothelial growth factor A(VEGFA). Chaenomelis Fructus exerts anti-inflammatory effect and reduces pannus formation by regulating the core targets such as VEGFA, IL-1β, and IL6 in the treatment of RA. The findings of this study provide new ideas for the future treatment of RA with Chaenomelis Fructus.
Animals
;
Mice
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Molecular Docking Simulation
;
Arthritis, Rheumatoid/genetics*
;
Tumor Necrosis Factor-alpha
;
NF-kappa B
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
10.Protective effect of Liujing Toutong Tablets on rats with permanent cerebral ischemia via NF-κB signaling pathway.
Zi-Han YU ; Ke PEI ; Ting-Ting ZHAO ; Hong-Chang LI ; Qin-Qing LI ; Wen-Jing ZHOU ; Wen-Bin HE ; Jun-Long ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5871-5880
This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1β, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(β-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1β, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and β-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1β, IL-6, CGRP, and NO in rat serum, increased VEGF and β-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and β-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1β. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing β-EP levels.
Rats
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Vascular Endothelial Growth Factor A/genetics*
;
I-kappa B Kinase/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-6/genetics*
;
Calcitonin Gene-Related Peptide/pharmacology*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Brain Ischemia/drug therapy*
;
Tablets

Result Analysis
Print
Save
E-mail