1.Development of a killed but metabolically active anthracis vaccine candidate strain.
Fei SHEN ; Shengling YUAN ; Dewen ZHAN ; Yanchun WANG ; Min REN ; Haoxia TAO ; Peng WANG ; Lingchun WANG ; Dongsheng CHEN ; Chunjie LIU
Chinese Journal of Biotechnology 2011;27(5):781-789
Anthrax is a zoonosis caused by Bacillus anthracis, which seriously affects human health. In recent years, a special phenomenon is found that the metabolic active of a bacterium remains after it is killed. To development of a KBMA (killed but metabolically active) Bacillus anthracis vaccine candidate strain, a plasmid pMAD and a recombinase system Cre-loxP were used to knockout the uvrAB gene of B. anthracis AP422 which lacks both of two plasmids pXO1 and pXO2. The results of PCR and RT-PCR shows that uvrAB genes were deleted from B. anthracis AP422 chromosome successfully. The constructed B. anthracis AP422deltauvrAB was inactivated by photochemical treatment (PCT) including an exposure in a long-wave-length ultraviolet (UVA) light and a treatment of 8-Methoxypsoralen (8-MOP), then the metabolic activity were detected by the method of MTS. The results showed that the killed B. anthracis AP422deltauvrAB maintained a highly metabolic activity for at least 4 hours, showing a state of KBMA. The KBMA strain of B. anthracis AP422deltauvrAB provides the prospective vaccine candidate strain for anthrax.
Anthrax
;
immunology
;
microbiology
;
prevention & control
;
Anthrax Vaccines
;
genetics
;
immunology
;
radiation effects
;
Bacillus anthracis
;
genetics
;
immunology
;
Gene Knockout Techniques
;
Methoxsalen
;
pharmacology
;
Ultraviolet Rays
;
Vaccines, Inactivated
;
genetics
;
immunology
2.Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.
Masoumeh FIROUZAMANDI ; Hassan MOEINI ; Davood HOSSEINI ; Mohd Hair BEJO ; Abdul Rahman OMAR ; Parvaneh MEHRBOD ; Aini IDERIS
Journal of Veterinary Science 2016;17(1):21-26
The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.
Animals
;
Antibodies, Viral/blood
;
Cercopithecus aethiops
;
Chickens
;
*HN Protein/genetics/immunology
;
Immunogenicity, Vaccine/*immunology
;
Newcastle Disease/immunology
;
Newcastle disease virus/enzymology/*genetics/immunology
;
Specific Pathogen-Free Organisms
;
Vaccines, DNA/genetics/*immunology
;
Vaccines, Inactivated/immunology
;
Vero Cells
;
*Viral Fusion Proteins/genetics/immunology
;
Viral Vaccines/genetics/*immunology/*standards
3.An inactivated vaccine to control the current H9N2 low pathogenic avian influenza in Korea.
Jun Gu CHOI ; Youn Jeong LEE ; Yong Joo KIM ; Eun Kyoung LEE ; Ok Mi JEONG ; Haan Woo SUNG ; Jae Hong KIM ; Jun Hun KWON
Journal of Veterinary Science 2008;9(1):67-74
The H9N2 subtype low pathogenic avian influenza is one of the most prevalent avian diseases worldwide, and was first documented in 1996 in Korea. This disease caused serious economic loss in Korea's poultry industry. In order to develop an oil-based inactivated vaccine, a virus that had been isolated in 2001 (A/chicken/Korea/01310/ 2001) was selected based on its pathogenic, antigenic, and genetic properties. However, in animal experiments, the efficacy of the vaccine was found to be very low without concentration of the antigen (2(7) to 2(10) hemagglutinin unit). In order to overcome the low productivity, we passaged the vaccine candidate virus to chicken eggs. After the 20th passage, the virus was approximately ten times more productive compared with the parent virus. For the most part, the passaged virus maintained the hemagglutinin cleavage site amino acid motif (PATSGR/GLF) and had only three amino acid changes (T133N, V216G, E439D, H3 numbering) in the hemagglutinin molecule, as well as 18 amino acid deletions (55-72) and one amino acid change (E54D) in the NA stalk region. The amino acid changes did not significantly affect the antigenicity of the vaccine virus when tested by hemagglutination inhibition assay. Though not complete, the vaccine produced after the 20th passage of the virus (01310 CE20) showed good protection against a homologous and recent Korean isolate (A/chicken/Korea/Q30/2004) in specific pathogen- free chickens. The vaccine developed in this study would be helpful for controlling the H9N2 LPAI in Korea.
Animals
;
Chickens
;
Gene Expression Regulation, Viral
;
Hemagglutinins/genetics
;
Influenza A Virus, H9N2 Subtype/*immunology/pathogenicity
;
Influenza Vaccines/*immunology
;
Influenza in Birds/epidemiology/*prevention & control/*virology
;
Korea/epidemiology
;
Neuraminidase/genetics
;
Specific Pathogen-Free Organisms
;
Time Factors
;
Vaccines, Inactivated/*immunology
4.Molecular identification of the vaccine strain from the inactivated oil emulsion H9N2 low pathogenic avian influenza vaccine.
Jun Gu CHOI ; Youn Jeong LEE ; Ji Yeon KIM ; Yeon Hee KIM ; Mi Ra PAEK ; Dong Kun YANG ; Seong Wan SON ; Jae Hong KIM
Journal of Veterinary Science 2010;11(2):161-163
In order to control the H9N2 subtype low pathogenic avian influenza (LPAI), an inactivated vaccine has been used in Korea since 2007. The Korean veterinary authority permitted the use of a single H9N2 LPAI vaccine strain to simplify the evolution of the circulating virus due to the immune pressure caused by the vaccine use. It is therefore important to determine the suitability of the vaccine strain in the final inactivated oil emulsion LPAI vaccine. In this study, we applied molecular rather than biological methods to verify the suitability of the vaccine strain used in commercial vaccines and successfully identified the strain by comparing the nucleotide sequences of the hemagglutinin and neuraminidase genes with that of the permitted Korean LPAI vaccine strain. It is thought that the method used in this study might be successfully applied to other viral genes of the LPAI vaccine strain and perhaps to other veterinary oil emulsion vaccines.
Animals
;
Base Sequence
;
Birds
;
DNA, Viral/chemistry/genetics
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics
;
Influenza A Virus, H9N2 Subtype/genetics/*immunology
;
Influenza Vaccines/genetics/*immunology
;
Influenza in Birds/*immunology/prevention & control/virology
;
Molecular Sequence Data
;
Neuraminidase/chemistry/genetics
;
Polymerase Chain Reaction/veterinary
;
Republic of Korea
;
Sequence Alignment
;
Vaccines, Inactivated/genetics/immunology
5.Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation.
Feng WEN ; Ji Hong MA ; Hai YU ; Fu Ru YANG ; Meng HUANG ; Yan Jun ZHOU ; Ze Jun LI ; Guang Zhi TONG
Journal of Veterinary Science 2014;15(3):381-388
Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China.
Animals
;
Female
;
Influenza A Virus, H3N2 Subtype/*genetics/immunology
;
Influenza Vaccines/genetics/immunology/*therapeutic use
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections/immunology/*prevention & control/virology
;
Reassortant Viruses/genetics/immunology
;
Reverse Genetics/methods/*veterinary
;
Swine
;
Swine Diseases/immunology/*prevention & control/virology
;
Vaccines, Inactivated
;
Virus Replication
6.Comparison of nucleotide and deduced amino acid sequences of E gene of the newly isolated Japanese encephalitis virus strains and inactivated vaccine strain P3.
Chinese Journal of Experimental and Clinical Virology 2006;20(1):56-60
BACKGROUNDTo analyze the difference of nucleotides and deduced amino acids sequences E gene between the newly isolated Japanese encephalitis (JE) virus strains from mosquitoes or patients and P3 strain.
METHODSThe E gene sequences of corresponding strains of JE virus were obtained from GenBank. Computer analyze of nucleic acid data and deduced amino acid sequence were accomplished using the Clustal X (1.8), DNASTAR, GENEDOC (3.2) programs.
RESULTSThe result showed that compared with the Fujian strains and P3 strain the nucleotide sequence homology was up to 98.3%, and the amino acid sequence homology was up to 98.2%, respectively. Compared with the Shanghai strains and P3 strain, the nucleotide sequence differences were 12%, and the amino acid sequence homology was up to 98.2%, respectively. Compared with P3 strain, there were nineteen amino acid variations in E gene of all the newly isolated strains. Between P3 and all the newly isolated JE virus strains, there are three common variations at E-129, E-222, E-366. And two common variations E-160 and E-487 were found only in Fujian strains, common variations at E-129, E-222, E-227, E-366 in Shanghai strains.
CONCLUSIONThere are some differences between P3 strain and JE viruses which were isolated from mosquitoes belonging to genotype I in Shanghai and from patients belonging to genotype III from Fujian province. But these variations are not in the important locations affecting the biological characteristic of the viruses.
Amino Acid Sequence ; Animals ; Culicidae ; virology ; Encephalitis Virus, Japanese ; genetics ; immunology ; isolation & purification ; Encephalitis, Japanese ; immunology ; virology ; Genetic Variation ; Humans ; Sequence Homology, Nucleic Acid ; Vaccines, Inactivated ; Viral Envelope Proteins ; genetics
7.Protection of chicken against very virulent IBDV provided by in ovo priming with DNA vaccine and boosting with killed vaccine and the adjuvant effects of plasmid-encoded chicken interleukin-2 and interferon-gamma.
Jeong Ho PARK ; Haan Woo SUNG ; Byung Il YOON ; Hyuk Moo KWON
Journal of Veterinary Science 2009;10(2):131-139
The aim of this study was to examine the efficacy of in ovo prime-boost vaccination against infectious bursal disease virus (IBDV) using a DNA vaccine to prime in ovo followed by a killed-vaccine boost post hatching. In addition, the adjuvant effects of plasmid-encoded chicken interleukin-2 and chicken interferon-gamma were tested in conjunction with the vaccine. A plasmid DNA vaccine (pcDNA-VP243) encoding the VP2, VP4, and VP3 proteins of the very virulent IBDV (vvIBDV) SH/92 strain was injected into the amniotic sac alone or in combination with a plasmid encoding chicken IL-2 (ChIL-2) or chicken IFN-gamma (ChIFN-gamma) at embryonation day 18, followed by an intramuscular injection of a commercial killed IBD vaccine at 1 week of age. The chickens were orally challenged with the vvIBDV SH/92 strain at 3 weeks of age and observed for 10 days. In ovo DNA immunization followed by a killed-vaccine boost provided significantly better immunity than the other options. No mortality was observed in this group after a challenge with the vvIBDV. The prime-boost strategy was moderately effective against bursal damage, which was measured by the bursa weight/body weight ratio, the presence of IBDV RNA, and the bursal lesion score. In ovo DNA vaccination with no boost did not provide sufficient immunity, and the addition of ChIL-2 or ChIFN-gamma did not enhance protective immunity. In the ConA-induced lymphocyte proliferation assay of peripheral blood lymphocyte collected 10 days post-challenge, there was greater proliferation responses in the DNA vaccine plus boost and DNA vaccine with ChIL-2 plus boost groups compared to the other groups. These findings suggest that priming with DNA vaccine and boosting with killed vaccine is an effective strategy for protecting chickens against vvIBDV.
Adjuvants, Immunologic/pharmacology
;
Animals
;
Antibodies, Viral/blood
;
Birnaviridae Infections/immunology/prevention & control/*veterinary/virology
;
Body Weight/immunology
;
Bursa of Fabricius/immunology
;
Chick Embryo
;
*Chickens
;
Histocytochemistry/veterinary
;
Immunization/*veterinary
;
Infectious bursal disease virus/genetics/*immunology
;
Interferon-gamma/pharmacology
;
Interleukin-2/pharmacology
;
Organ Size/immunology
;
Poultry Diseases/immunology/*prevention & control/virology
;
RNA, Viral/chemistry/genetics
;
Random Allocation
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Specific Pathogen-Free Organisms
;
Vaccines, DNA/*administration & dosage/immunology
;
Vaccines, Inactivated/administration & dosage/immunology
;
Viral Vaccines/*administration & dosage/immunology