1.Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice.
Jong Yun NOH ; Dong Hee HAN ; Mi Hee KIM ; Il Gyu KO ; Sung Eun KIM ; Noheon PARK ; Han Kyoung CHOE ; Khae Hawn KIM ; Kyungjin KIM ; Chang Ju KIM ; Sehyung CHO
Experimental & Molecular Medicine 2014;46(3):e81-
Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In the present study, we demonstrate that Per2 promoter activity clearly oscillates in neonate and adult bladders cultured ex vivo from Per2::Luc knock-in mice. In subsequent experiments, we show that multiple local oscillators are operating in all the bladder tissues (detrusor, sphincter and urothelim) and the lumbar spinal cord (L4-5) but not in the pontine micturition center or the ventrolateral periaqueductal gray of the brain. Accordingly, the water intake and urine volume exhibited daily and circadian variations in young adult wild-type mice but not in Per1-/- Per2-/- mice, suggesting a functional clock-dependent nature of the micturition rhythm. Particularly in PDK mice, the water intake and urinary excretion displayed an arrhythmic pattern under constant darkness, and the amount of water consumed and excreted significantly increased compared with those of WT mice. These results suggest that local circadian clocks reside in three types of bladder tissue and the lumbar spinal cord and may have important roles in the circadian control of micturition function.
Animals
;
*Circadian Clocks
;
Drinking
;
Mice
;
Organ Specificity
;
Periaqueductal Gray/metabolism/physiology
;
Period Circadian Proteins/genetics/*metabolism
;
Pons/metabolism/physiology
;
Spinal Cord/*metabolism/physiology
;
Urinary Bladder/innervation/metabolism/*physiology
;
Urination
2.Study on the response characteristics of the in vivo bladder detrusor to the cholinergic transmitter.
Xiao-Qing HUANG ; Xiao-Ran YE ; Ling CHEN
Chinese Journal of Applied Physiology 2008;24(3):360-362
Acetylcholine
;
metabolism
;
physiology
;
Animals
;
Cholinergic Agonists
;
pharmacology
;
Male
;
Muscle Contraction
;
drug effects
;
physiology
;
Muscle Relaxation
;
drug effects
;
physiology
;
Muscle, Smooth
;
drug effects
;
pathology
;
physiopathology
;
Rabbits
;
Random Allocation
;
Receptors, Cholinergic
;
physiology
;
Synaptic Transmission
;
drug effects
;
Urinary Bladder
;
drug effects
;
innervation
;
physiopathology
3.Morphological changes of cholinergic nerve fibers in the urinary bladder after establishment of artificial somatic-autonomic reflex arc in rats.
Han-Zhi WANG ; Shu-Rong LI ; Can WEN ; Chuan-Guo XIAO ; Bing-Yin SU
Neuroscience Bulletin 2007;23(5):277-281
OBJECTIVETo establish an artificial somatic-autonomic reflex arc in rats and observe the following distributive changes of neural fibers in the bladder.
METHODSAdult Sprague-Dawley rats were randomly divided into three groups: control group, spinal cord injury (SCI) group, and reinnervation group. DiI retrograde tracing was used to verify establishment of the model and to investigate the transport function of the regenerated efferent axons in the new reflex arc. Choline acetyltransferase (ChAT) in the DiI-labeled neurons was detected by immunohistochemistry. Distribution of neural fibers in the bladder was observed by acetylcholine esterase staining.
RESULTSDiI-labeled neurons distributed mainly in the left ventral horn from L3 to L5, and some of them were also ChAT-positive. The neural fibers in the bladder detrusor reduced remarkably in the SCI group compared with the control (P < 0.05). After establishment of the somatic-autonomic reflex arc in the reinnervation group, the number of ipsilateral fibers in the bladder increased markedly compared with the SCI group (P < 0.05), though still much less than that in the control (P < 0.05).
CONCLUSIONThe efferent branches of the somatic nerves may grow and replace the parasympathetic preganglionic axons through axonal regeneration. Acetylcholine is still the major neurotransmitter of the new reflex arc. The controllability of detrusor may be promoted when it is reinnervated by the pelvic ganglia efferent somatic motor fibers from the postganglionic axons.
Acetylcholinesterase ; biosynthesis ; Anastomosis, Surgical ; Animals ; Autonomic Fibers, Preganglionic ; physiology ; Cholinergic Fibers ; metabolism ; Immunohistochemistry ; Motor Neurons ; cytology ; metabolism ; Nerve Regeneration ; physiology ; Neural Pathways ; cytology ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reflex ; physiology ; Spinal Cord Injuries ; physiopathology ; Spinal Nerve Roots ; surgery ; Urinary Bladder ; innervation ; physiology ; surgery ; Urinary Bladder, Neurogenic ; surgery