1.An Experimental Study of the Biochemical Alterations in the Acute Focal Cerebral Ischemia:Disturbance of Energy Metabolism.
Young Cheol SHEEN ; Kyu Man SHIN
Journal of Korean Neurosurgical Society 1989;18(4):525-533
The energy metabolism of the brain has been measured in cat model using high performance liquid chromatography(HPLC). The experimental groups were divided into three according to the duration of ischemia. In 1- and 3-hour ischemia groups, recirculation had increased the ATP, UTP and GTP significantly to 39-49%, 53-57% and 39-62% of the sham control value respectively. Also in these groups, recirculation had increased adenylate energy charge(E.C.) to 75-82% of sham control value. Whereas there were slight increase in adenylate E.C. after recirculation in 5-hr ischemia group, with the remainders not increasing significantly. The Na+, K+-ATPase activities were not significant statistically among the groups. These results suggest that in order to prevent from the irreversible ischemic brain damage, restoration of blood flow must be accomplished within 3 hours from the onset of the acute focal ischemia in cat.
Adenosine Triphosphate
;
Animals
;
Brain
;
Cats
;
Chromatography, High Pressure Liquid
;
Energy Metabolism*
;
Guanosine Triphosphate
;
Ischemia
;
Uridine Triphosphate
2.The Combined Therapeutic Effect of Drugs in Experimental Acute Focal Cerebral Ischemia.
Dong Jin YOO ; Kyu Man SHIN ; Joong Soo HAN
Journal of Korean Neurosurgical Society 1990;19(2):217-224
The study was designed to examine the effects of pretreatment with mannitol, methyl prednisolone and nimodipine on the acute focal cerebral ischemia in the cats of occlusion of the proximal part of the middle cerebral artery via the postorbital approach. The energy metabolisms of the brain was measured utilizing the high liquid performance chromatography in the brain tissues of cats. The experimental animals were seperated into 3 groups. group I: the sham control group. group II: the recirculation group. group III: the treatment group. There were significant increase in the ATP, GTP, UTP and E.C. levels in focal ischemic cerebral tissues of the treatment group when compared with the recirculation group. It is suggested that pretreatment with the combination of these drugs may prevent the ischemic damage from the acute focal cerebral ischemia by the maintenance of high energy metabolites. However further studies should determine the synergistic pharmacologic mechanisms in this therapeutic strategy.
Adenosine Triphosphate
;
Animals
;
Brain
;
Brain Ischemia*
;
Cats
;
Chromatography
;
Energy Metabolism
;
Guanosine Triphosphate
;
Mannitol
;
Middle Cerebral Artery
;
Nimodipine
;
Prednisolone
;
Uridine Triphosphate
3.Hemodynamic characteristics of extracellular UTP in the perfused rat liver.
In Deok KONG ; Hae Sook CHUNG ; Kyu Sang PARK ; Joon Kyu HAN ; Joong Woo LEE
Yonsei Medical Journal 1996;37(4):262-269
Uridine 5'-triphosphate (UTP) is stored in the granules of cells such as platelets and is released into the extracellular space upon cell stimulation. Extracellular UTP is known to influence many biological processes. We investigated the hemodynamic effects of UTP on the perfused rat liver and characterized its receptors. Liver perfusions were performed in a recirculation system under constant pressure (28 cmH2O). The perfusion flow and oxygen consumption rate were measured at 30 second intervals. UTP decreased the perfusion flow and the oxygen consumption rate, dose-dependently. UTP-induced changes were transient and disappeared in about 10 minutes. Suramin (P2-purinergic antagonist, 100 uM) and indomethacin (cyclooxygenase inhibitor, 20 uM) blocked UTP-induced hemodynamic changes significantly. The effects of UTP were also inhibited when Kupffer cells were damaged with treatment of gadolinium chloride (10 mg/kg iv). L-NAME (1 mM), a potent inhibitor of nitric oxide synthase, markedly enhanced and prolonged the contractile response of UTP in the hepatic vessel. These results suggest that UTP acts mainly on suramin-sensitive UTP receptors on the Kupffer cell through prostanoid synthesis. The nitric oxide systems in the endothelium seem to counteract the vasoconstrictile action of UTP in the hepatic circulation.
Animal
;
Extracellular Space/*metabolism
;
Hemodynamics
;
Liver/*metabolism
;
*Liver Circulation
;
Perfusion
;
Rats
;
Rats, Sprague-Dawley
;
Support, Non-U.S. Gov't
;
Uridine Triphosphate/*metabolism
4.UTP regulates spontaneous transient outward currents in porcine coronary artery smooth muscle cells through PLC-IP(3) signaling pathway.
Peng-Yun LI ; Xiao-Rong ZENG ; Yan YANG ; Fang CAI ; Miao-Ling LI ; Zhi-Fei LIU ; Jie PEI ; Wen ZHOU
Acta Physiologica Sinica 2008;60(1):65-73
The aim of the present study was to investigate the effects of inositol 1,4,5-trisphosphate (IP(3))-generating agonist UTP on spontaneous transient outward currents (STOCs), and explore the role of intracellular Ca(2+) release in the current response mediated by IP(3) in porcine coronary artery smooth muscle cells (CASMCs). The coronary artery was excised from the fresh porcine heart and cut into small segments (2 mm × 5 mm) and then transferred to enzymatic dissociation solution for incubation. Single CASMCs were obtained by two-step enzyme digestion at 37 °C. STOCs were recorded and characterized using the perforated whole-cell patch-clamp configuration in freshly isolated porcine CASMCs. The currents were amplified and filtered by patch-clamp amplifier (Axopatch 200B), and then the digitized data were recorded by pClamp 9.0 software and further analyzed by MiniAnalysis 6.0 program. The results were as follows: (1) UTP led to conspicuous increases in STOC amplitude by (57.54±5.34)% and in frequency by (77.46±8.42)% (P<0.01, n=38). (2) The specific blocker of phospholipase C (PLC) - U73122 (5 μmol/L) remarkably reduced STOC amplitude by (31.04±7.46)% and frequency by (41.65±16.59)%, respectively (P<0.05, n=10). In the presence of U73122, UTP failed to reactivate STOCs (n=7). (3) Verapamil (20 μmol/L) and CdCl2 (200 μmol/L), two blockers of L-type voltage-dependent Ca(2+) channels, had little effects on STOCs initiated by UTP (n=8). (4) 1 μmol/L bisindolylmaleimide I (BisI), a potent blocker of protein kinase C (PKC), significantly increased STOC amplitude by (65.44±24.66)% and frequency by (61.35±21.47)% (P<0.01, n=12); UTP (40 μmol/L), applied in the presence of 1 μmol/L BisI, could further increase STOC activity (P<0.05, P<0.01, n=12). Subsequent application of ryanodine (50 μmol/L) abolished STOC activity. (5) In the presence of UTP (40 μmol/L), inhibition of IP(3) receptors (IP(3)Rs) by 2-aminoethoxydiphenyl borate (2-APB, 40 μmol/L) reduced STOC amplitude by (24.08±3.97)% (P<0.05, n=8), but had little effect on STOC frequency (n=8). While application of 2-APB (80 μmol/L) significantly reduced STOC amplitude by (31.43±6.34)% and frequency by (40.59±19.01)%, respectively (P<0.05, P<0.01, n=6). Subsequent application of ryanodine (50 μmol/L) completely blocked STOC activity. Pretreatment of cells with 2-APB (40 μmol/L) or ryanodine (50 μmol/L), UTP (40 μmol/L) failed to reactivate STOCs. The results suggest that UTP activates STOCs mainly via PLC and IP(3)-dependent mechanisms. Complex Ca(2+)-mobilization pathways are involved in UTP-mediated STOC activation in porcine CASMCs.
Animals
;
Boron Compounds
;
pharmacology
;
Calcium
;
metabolism
;
Coronary Vessels
;
cytology
;
Inositol 1,4,5-Trisphosphate
;
metabolism
;
Myocytes, Smooth Muscle
;
metabolism
;
Protein Kinase C
;
metabolism
;
Ryanodine
;
pharmacology
;
Signal Transduction
;
Swine
;
Type C Phospholipases
;
metabolism
;
Uridine Triphosphate
;
metabolism
5.Effect of multi-glycosides of Tripterygium wilfordii on renal injury in diabetic kidney disease rats through NLRP3/caspase-1/GSDMD pyroptosis pathway.
Chun-Dong SONG ; Dan SONG ; Ping-Ping JIA ; Feng-Yang DUAN ; Ying DING ; Xian-Qing REN ; Wen-Sheng ZHAI ; Yao-Xian WANG ; Shu-Li HUANG
China Journal of Chinese Materia Medica 2023;48(10):2639-2645
This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.
Rats
;
Male
;
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-18/metabolism*
;
Glycosides/pharmacology*
;
Tripterygium
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Pyroptosis
;
Uridine Triphosphate/pharmacology*
;
Kidney
;
Valsartan/pharmacology*
;
RNA, Messenger/metabolism*
;
Diabetes Mellitus
6.Mechanism of Zhenwu Decoction in improving renal inflammatory injury in mice with DN of spleen-kidney Yang deficiency syndrome by regulating ROCK/IKK/NF-κB pathway.
Yu-Qiu JIN ; Guang-Shun CHEN ; Min BAI ; Zhe ZHAO ; Yan-Xu CHEN ; Meng-Yuan TIAN ; Jia-Lian CHEN ; Qing-Sheng WANG ; Zhen-Hua LIU
China Journal of Chinese Materia Medica 2023;48(18):5041-5048
To investigate the intervention effect and mechanism of Zhenwu Decoction on diabetic nephropathy(DN) mice of spleen-kidney Yang deficiency syndrome based on the Rho-associated coiled-coil kinase(ROCK)/IκB kinase(IKK)/nuclear factor-κB(NF-κB) pathway. Ninety-five 7-week-old db/db male mice and 25 7-week-old db/m male mice were fed adaptively for one week. The DN model of spleen-kidney Yang deficiency syndrome was induced by Dahuang Decoction combined with hydrocortisone by gavage, and then the model was evaluated. After modeling, they were randomly divided into a model group, high-dose, medium-dose, and low-dose Zhenwu Decoction groups(33.8, 16.9, and 8.45 g·kg~(-1)·d~(-1)), and an irbesartan group(25 mg·kg~(-1)·d~(-1)), with at least 15 animals in each group. The intervention lasted for eight weeks. After the intervention, body weight and food intake were measured. Serum crea-tinine(Scr), blood urea nitrogen(BUN), fasting blood glucose(FBG), urinary albumin(uALb), and urine creatinine(Ucr) were determined. The uALb/Ucr ratio(ACR) and 24 h urinary protein(UTP) were calculated. Renal pathological morphology was evaluated by HE staining and Masson staining. The levels of key molecular proteins in the ROCK/IKK/NF-κB pathway were detected by Western blot. Enzyme-linked immunosorbent assay(ELISA) was used to detect interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Compared with the blank group, the model group showed increased content of BUN, uALb, and SCr, increased values of 24 h UTP and ACR, decreased content of Ucr(P<0.05), enlarged glomeruli, thickened basement membrane, mesangial matrix proliferation, inflammatory cell infiltration, and collagen fiber deposition. The protein expression of ROCK1, ROCK2, IKK, NF-κB, phosphorylated IKK(p-IKK), phosphorylated NF-κB(p-NF-κB), and phosphorylated inhibitor of NF-κB(p-IκB) increased(P<0.05), while the protein expression of inhibitor of NF-κB(IκB) decreased(P<0.05). The levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α increased(P<0.05), while the level of IL-10 decreased(P<0.05). Compared with the model group, the groups with drug treatment showed decreased levels of BUN, uALb, SCr, 24 h UTP, and ACR, increased level of Ucr(P<0.05), and improved renal pathological status to varying degrees. The high-and medium-dose Zhenwu Decoction groups and the irbesartan group showed reduced protein expression of ROCK1, ROCK2, IKK, NF-κB, p-IKK, p-NF-κB, and p-IκB in the kidneys(P<0.05), increased protein expression of IκB(P<0.05), decreased levels of serum inflammatory factors IL-1β, IL-6, IL-8, and TNF-α(P<0.05), and increased level of IL-10(P<0.05). Zhenwu Decoction can significantly improve renal function and renal pathological damage in DN mice of spleen-kidney Yang deficiency syndrome, and its specific mechanism may be related to the inhibition of inflammatory response by down-regulating the expression of key molecules in the ROCK/IKK/NF-κB pathway in the kidney.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Interleukin-8
;
Interleukin-10
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
I-kappa B Kinase
;
Spleen
;
Irbesartan
;
Uridine Triphosphate
;
Yang Deficiency/drug therapy*
;
Kidney/pathology*