1.Association of Combined TCF7L2 and KCNQ1 Gene Polymorphisms with Diabetic Micro- and Macrovascular Complications in Type 2 Diabetes Mellitus
Rujikorn RATTANATHAM ; Nongnuch SETTASATIAN ; Nantarat KOMANASIN ; Upa KUKONGVIRIYAPAN ; Kittisak SAWANYAWISUTH ; Phongsak INTHARAPHET ; Vichai SENTHONG ; Chatri SETTASATIAN
Diabetes & Metabolism Journal 2021;45(4):578-593
Background:
Vascular complications are the major morbid consequences of type 2 diabetes mellitus (T2DM). The transcription factor 7-like 2 (TCF7L2), potassium voltage-gated channel subfamily Q member 1 (KCNQ1), and inwardly-rectifying potassium channel, subfamily J, member 11 gene (KCNJ11) are common T2DM susceptibility genes in various populations. However, the associations between polymorphisms in these genes and diabetic complications are controversial. This study aimed to investigate the effects of combined gene-polymorphisms within TCF7L2, KCNQ1, and KCNJ11 on vascular complications in Thai subjects with T2DM.
Methods:
We conducted a case-control study comprising 960 T2DM patients and 740 non-diabetes controls. Single nucleotide polymorphisms in TCF7L2, KCNQ1, and KCNJ11 were genotyped and evaluated for their association with diabetic vascular complications.
Results:
The gene variants TCF7L2 rs290487-T, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-C were associated with increased risk of T2DM. TCF7L2 rs7903146-C, TCF7L2 rs290487-C, KCNQ1 rs2237892-T, and KCNQ1 rs2237897-T revealed an association with hypertension. The specific combination of risk-alleles that have effects on T2DM and hypertension, TCF7L2 rs7903146-C, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-T, as genetic risk score (GRS), pronounced significant association with coronary artery disease (CAD), cumulative nephropathy and CAD, and cumulative microvascular and macrovascular complications (respective odds ratios [ORs] with 95% confidence interval [95% CI], comparing between GRS 2–3 and GRS 5–6, were 7.31 [2.03 to 26.35], 3.92 [1.75 to 8.76], and 2.33 [1.13 to 4.79]).
Conclusion
This study demonstrated, for the first time, the effect conferred by specific combined genetic variants in TCF7L2 and KCNQ1 on diabetic vascular complications, predominantly with nephropathy and CAD. Such a specific pattern of gene variant combination may implicate in the progression of T2DM and life-threatening vascular complications.
2.Association of Combined TCF7L2 and KCNQ1 Gene Polymorphisms with Diabetic Micro- and Macrovascular Complications in Type 2 Diabetes Mellitus
Rujikorn RATTANATHAM ; Nongnuch SETTASATIAN ; Nantarat KOMANASIN ; Upa KUKONGVIRIYAPAN ; Kittisak SAWANYAWISUTH ; Phongsak INTHARAPHET ; Vichai SENTHONG ; Chatri SETTASATIAN
Diabetes & Metabolism Journal 2021;45(4):578-593
Background:
Vascular complications are the major morbid consequences of type 2 diabetes mellitus (T2DM). The transcription factor 7-like 2 (TCF7L2), potassium voltage-gated channel subfamily Q member 1 (KCNQ1), and inwardly-rectifying potassium channel, subfamily J, member 11 gene (KCNJ11) are common T2DM susceptibility genes in various populations. However, the associations between polymorphisms in these genes and diabetic complications are controversial. This study aimed to investigate the effects of combined gene-polymorphisms within TCF7L2, KCNQ1, and KCNJ11 on vascular complications in Thai subjects with T2DM.
Methods:
We conducted a case-control study comprising 960 T2DM patients and 740 non-diabetes controls. Single nucleotide polymorphisms in TCF7L2, KCNQ1, and KCNJ11 were genotyped and evaluated for their association with diabetic vascular complications.
Results:
The gene variants TCF7L2 rs290487-T, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-C were associated with increased risk of T2DM. TCF7L2 rs7903146-C, TCF7L2 rs290487-C, KCNQ1 rs2237892-T, and KCNQ1 rs2237897-T revealed an association with hypertension. The specific combination of risk-alleles that have effects on T2DM and hypertension, TCF7L2 rs7903146-C, KCNQ1 rs2237892-C, and KCNQ1 rs2237897-T, as genetic risk score (GRS), pronounced significant association with coronary artery disease (CAD), cumulative nephropathy and CAD, and cumulative microvascular and macrovascular complications (respective odds ratios [ORs] with 95% confidence interval [95% CI], comparing between GRS 2–3 and GRS 5–6, were 7.31 [2.03 to 26.35], 3.92 [1.75 to 8.76], and 2.33 [1.13 to 4.79]).
Conclusion
This study demonstrated, for the first time, the effect conferred by specific combined genetic variants in TCF7L2 and KCNQ1 on diabetic vascular complications, predominantly with nephropathy and CAD. Such a specific pattern of gene variant combination may implicate in the progression of T2DM and life-threatening vascular complications.
3.Tetrahydrocurcumin Ameliorates Kidney Injury and High Systolic Blood Pressure in High-Fat Diet-Induced Type 2 Diabetic Mice
Weerapon SANGARTIT ; Kyung Bong HA ; Eun Soo LEE ; Hong Min KIM ; Upa KUKONGVIRIYAPAN ; Eun Young LEE ; Choon Hee CHUNG
Endocrinology and Metabolism 2021;36(4):810-822
Background:
Activation of the intrarenal renin-angiotensin system (RAS) is implicated in the pathogenesis of kidney injury and hypertension. We aimed to investigate the protective effect of tetrahydrocurcumin (THU) on intrarenal RAS expression, kidney injury, and systolic blood pressure (SBP) in high-fat diet (HFD)-induced type 2 diabetic mice.
Methods:
Eight-week-old male mice were fed a regular diet (RD) or HFD for 12 weeks, and THU (50 or 100 mg/kg/day) was intragastrically administered with HFD. Physiological and metabolic changes were monitored and the expression of RAS components and markers of kidney injury were assessed.
Results:
HFD-fed mice exhibited hyperglycemia, insulin resistance, and dyslipidemia compared to those in the RD group (P<0.05). Kidney injury in these mice was indicated by an increase in the ratio of albumin to creatinine, glomerular hypertrophy, and the effacement of podocyte foot processes. Expression of intrarenal angiotensin-converting enzyme, angiotensin II type I receptor, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4, and monocyte chemoattractant protein-1 was also markedly increased in HFD-fed mice. HFD-fed mice exhibited elevated SBP that was accompanied by an increase in the wall thickness and vascular cross-sectional area (P<0.05), 12 weeks post-HFD consumption. Treatment with THU (100 mg/kg/day) suppressed intrarenal RAS activation, improved insulin sensitivity, and reduced SBP, thus, attenuating kidney injury in these mice.
Conclusion
THU alleviated kidney injury in mice with HFD-induced type 2 diabetes, possibly by blunting the activation of the intrarenal RASicotinamide adenine dinucleotide phosphate oxidase IV (NOX4)/monocyte chemoattractant protein 1 (MCP-1) axis and by lowering the high SBP.
4.Tetrahydrocurcumin Ameliorates Kidney Injury and High Systolic Blood Pressure in High-Fat Diet-Induced Type 2 Diabetic Mice
Weerapon SANGARTIT ; Kyung Bong HA ; Eun Soo LEE ; Hong Min KIM ; Upa KUKONGVIRIYAPAN ; Eun Young LEE ; Choon Hee CHUNG
Endocrinology and Metabolism 2021;36(4):810-822
Background:
Activation of the intrarenal renin-angiotensin system (RAS) is implicated in the pathogenesis of kidney injury and hypertension. We aimed to investigate the protective effect of tetrahydrocurcumin (THU) on intrarenal RAS expression, kidney injury, and systolic blood pressure (SBP) in high-fat diet (HFD)-induced type 2 diabetic mice.
Methods:
Eight-week-old male mice were fed a regular diet (RD) or HFD for 12 weeks, and THU (50 or 100 mg/kg/day) was intragastrically administered with HFD. Physiological and metabolic changes were monitored and the expression of RAS components and markers of kidney injury were assessed.
Results:
HFD-fed mice exhibited hyperglycemia, insulin resistance, and dyslipidemia compared to those in the RD group (P<0.05). Kidney injury in these mice was indicated by an increase in the ratio of albumin to creatinine, glomerular hypertrophy, and the effacement of podocyte foot processes. Expression of intrarenal angiotensin-converting enzyme, angiotensin II type I receptor, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4, and monocyte chemoattractant protein-1 was also markedly increased in HFD-fed mice. HFD-fed mice exhibited elevated SBP that was accompanied by an increase in the wall thickness and vascular cross-sectional area (P<0.05), 12 weeks post-HFD consumption. Treatment with THU (100 mg/kg/day) suppressed intrarenal RAS activation, improved insulin sensitivity, and reduced SBP, thus, attenuating kidney injury in these mice.
Conclusion
THU alleviated kidney injury in mice with HFD-induced type 2 diabetes, possibly by blunting the activation of the intrarenal RASicotinamide adenine dinucleotide phosphate oxidase IV (NOX4)/monocyte chemoattractant protein 1 (MCP-1) axis and by lowering the high SBP.
5.EW-7197 Attenuates the Progression of Diabetic Nephropathy in db/db Mice through Suppression of Fibrogenesis and Inflammation
Kyung Bong HA ; Weerapon SANGARTIT ; Ah Reum JEONG ; Eun Soo LEE ; Hong Min KIM ; Soyeon SHIM ; Upa KUKONGVIRIYAPAN ; Dae-Kee KIM ; Eun Young LEE ; Choon Hee CHUNG
Endocrinology and Metabolism 2022;37(1):96-111
Background:
Diabetic nephropathy (DN) is characterized by albuminuria and accumulation of extracellular matrix (ECM) in kidney. Transforming growth factor-β (TGF-β) plays a central role in promoting ECM accumulation. We aimed to examine the effects of EW-7197, an inhibitor of TGF-β type 1 receptor kinase (ALK5), in retarding the progression of DN, both in vivo, using a diabetic mouse model (db/db mice), and in vitro, in podocytes and mesangial cells.
Methods:
In vivo study: 8-week-old db/db mice were orally administered EW-7197 at a dose of 5 or 20 mg/kg/day for 10 weeks. Metabolic parameters and renal function were monitored. Glomerular histomorphology and renal protein expression were evaluated by histochemical staining and Western blot analyses, respectively. In vitro study: DN was induced by high glucose (30 mM) in podocytes and TGF-β (2 ng/mL) in mesangial cells. Cells were treated with EW-7197 (500 nM) for 24 hours and the mechanism associated with the attenuation of DN was investigated.
Results:
Enhanced albuminuria and glomerular morphohistological changes were observed in db/db compared to that of the nondiabetic (db/m) mice. These alterations were associated with the activation of the TGF-β signaling pathway. Treatment with EW-7197 significantly inhibited TGF-β signaling, inflammation, apoptosis, reactive oxygen species, and endoplasmic reticulum stress in diabetic mice and renal cells.
Conclusion
EW-7197 exhibits renoprotective effect in DN. EW-7197 alleviates renal fibrosis and inflammation in diabetes by inhibiting downstream TGF-β signaling, thereby retarding the progression of DN. Our study supports EW-7197 as a therapeutically beneficial compound to treat DN.
6. Protective effects of rice bran hydrolysates on heart rate variability, cardiac oxidative stress, and cardiac remodeling in high fat and high fructose diet-fed rats
Ketmanee SENAPHAN ; Pisit SUWANNACHOT ; Geerasak THIRATANABOON ; Ketmanee SENAPHAN ; Upa KUKONGVIRIYAPAN ; Weerapon SANGARTIT ; Ketmanee SENAPHAN ; Upa KUKONGVIRIYAPAN ; Weerapon SANGARTIT ; Upa KUKONGVIRIYAPAN ; Weerapon SANGARTIT ; Supawan THAWORNCHINSOMBUT ; Akkasit JONGJAREONRAK
Asian Pacific Journal of Tropical Biomedicine 2021;11(5):183-193
Objective: To examine the ameliorative effect of rice bran hydrolysates (RBH) on metabolic disorders, cardiac oxidative stress, heart rate variability (HRV), and cardiac structural changes in high fat and high fructose (HFHF)-fed rats. Methods: Male Sprague-Dawley rats were daily fed either standard chow diet with tap water or an HFHF diet with 10% fructose in drinking water over 16 weeks. RBH (500 and 1 000 mg/kg/day) was orally administered to the HFHF-diet-fed rats during the last 6 weeks of the study period. At the end of the treatment, metabolic parameters, oxidative stress, HRV, and cardiac structural changes were examined. Results: RBH administration significantly ameliorated metabolic disorders by improving lipid profiles, insulin sensitivity, and hemodynamic parameters. Moreover, RBH restored HRV, as evidenced by decreasing the ratio of low-frequency to high-frequency power of HRV, a marker of autonomic imbalance. Cardiac oxidative stress was also mitigated after RBH supplementation by decreasing cardiac malondialdehyde and protein carbonyl, upregulating eNOS expression, and increasing catalase activity in the heart. Furthermore, RBH mitigated cardiac structural changes by reducing cardiac hypertrophy and myocardial fibrosis in HFHF-diet-fed rats. Conclusions: The present findings suggest that consumption of RBH may exert cardioprotective effects against autonomic imbalances, cardiac oxidative stress, and structural changes in metabolic syndrome.
7. Sang-Yod rice bran hydrolysates alleviate hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in nitric oxide deficient hypertensive rats
Gulladawan JAN-ON ; Akarachai TUBSAKUL ; Weerapon SANGARTIT ; Poungrat PAKDEECHOTE ; Upa KUKONGVIRIYAPAN ; Gulladawan JAN-ON ; Veerapol KUKONGVIRIYAPAN ; Ketmanee SENAPHAN ; Chakree THONGRAUNG
Asian Pacific Journal of Tropical Biomedicine 2021;11(1):10-19
Objective: To evaluate the potential therapeutic effect of Sang-Yod rice bran hydrolysates (SRH) and in combination with lisinopril against hypertension, endothelial dysfunction, vascular remodeling, and oxidative stress in rats with nitric oxide deficiency-induced hypertension. Methods: Hypertension was induced in male Sprague-Dawley rats by administration of a nitric oxide synthase inhibitor, Nω- nitro-L-arginine methyl ester (L-NAME) in drinking water for 6 weeks. Hypertensive rats were administered daily with SRH (500 mg/kg/day), lisinopril (1 mg/kg/day), or the combination of SRH and lisinopril by gastric lavage for the last 3 weeks of L-NAME treatment. Hemodynamic status, vascular reactivity to vasoactive agents, and vascular remodeling were assessed. Blood and aortic tissues were collected for measurements of oxidative stress markers, plasma angiotensin-converting enzyme (ACE) activity, plasma angiotensin II, and protein expression. Results: L-NAME induced remarkable hypertension and severe oxidative stress, and altered contents of smooth muscle cells, elastin, and collagen of the aortic wall. SRH or lisinopril alone reduced blood pressure, restored endothelial function, decreased plasma ACEs and angiotensin II levels, alleviated oxidant markers and glutathione redox status, and restored the vascular structure. The effects were associated with increased expression of endothelial nitric oxide synthase and decreased expression of gp91phox and AT1R expression. The combination of SRH and lisinopril was more effective than monotherapy. Conclusions: SRH alone or in combination with lisinopril exert an antihypertensive effect and improve endothelial function and vascular remodeling through reducing oxidative stress and suppressing elevated renin-angiotensin system.
8. Rice bran hydrolysates induce immunomodulatory effects by suppression of chemotaxis, and modulation of cytokine release and cell-mediated cytotoxicity
Suphanthip PHUSRISOM ; Laddawan SENGGUNPRAI ; Auemduan PRAWAN ; Sarinya KONGPETCH ; Veerapol KUKONGVIRIYAPAN ; Upa KUKONGVIRIYAPAN ; Supawan THAWORNCHINSOMBUT ; Ronnachai CHANGSRI
Asian Pacific Journal of Tropical Biomedicine 2020;10(10):470-478
Objective: To evaluate the immunomodulatory effects of rice bran hydrolysates on cultured immune cells and their underlying mechanism. Methods: Rice bran hydrolysates were prepared from pigmented rice (Oryza sativa L.) by hydrothermolysis and protease digestion. Rice bran hydrolysates were assayed for phenolic content and antioxidant activity. Cell proliferation of Jurkat, THP-1 and peripheral blood mononuclear cells (PBMC) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Chemotaxis was evaluated by transwell chamber methods. Immunoadherence of THP-1 was performed on cultured human umbilical vein endothelial cells (HUVEC). Cytokine released from PBMC was measured by ELISA assay kits. Lymphocyte-mediated cytotoxicity was carried out on KKU-452 cells. Proteins associated with immunomodulation were analyzed by Western immunoblotting assay. Results: Rice bran hydrolysates were rich in phenolic compounds, such as ferulic acid, catechin, quercetin, and quercetin glycosides. Rice bran hydrolysates suppressed phytohemagglutinin (PHA)- stimulated proliferation of PBMC and Jurkat cells, chemotaxis of Jurkat and THP-1 cells, and immunoadherence of THP-1 on HUVEC cultured cells. The cellular mechanism of rice bran hydrolysates involved the activation of AMPK as well as suppression of mTOR, NF-κB and VCAM-1. Rice bran hydrolysates potentiated PBMC on the PHA-stimulated release of IL-2, TNF-α, and IL-4, and enhanced PHA-induced non-MHC-restricted cytotoxicity on KKU-452 cancer cells. Conclusions: The immunomodulatory effect of phytochemicals derived from rice bran hydrolysates suggests its therapeutic potential for further investigation.
9. Anti-tumor activity of rice bran hydrolysates on migration, invasion and angiogenesis
Suphanthip PHUSRISOM ; Laddawan SENGGUNPRAI ; Auemduan PRAWAN ; Sarinya KONGPETCH ; Veerapol KUKONGVIRIYAPAN ; Upa KUKONGVIRIYAPAN ; Supawan THAWORNCHINSOMBUT ; Sirithon SIRIAMORNPUN ; Theeraphan CHUMROENPHAT ; Ronnachai CHANGSRI
Asian Pacific Journal of Tropical Biomedicine 2021;11(7):317-326
Objective: To investigate anti-tumor effect of rice bran hydrolysates (RBH) on proliferation, migration, invasion, and angiogenesis of cholangiocarcinoma (CCA) cells, and elucidate the underlying mechanisms. Methods: RBH was prepared from Tubtim Chumprae rice (Oryza sativa L.) by hydrothermolysis followed by protease digestion. Phenolic content in RBH was analyzed by high-performance liquid chromatography. Human CCA cells, KKU-156, KKU-452, and KKU-100, were used to study the effects of RBH on proliferation, migration, invasion, and adhesion by wound healing, Transwell chamber, and fibronectin cell adhesion assays. Angiogenesis was evaluated using human umbilical vein endothelial cells. Proteins associated with cancer progression were analyzed by immunobloting assays. Results: RBH contained carbohydrates, proteins, lipids, and various phenolic compounds and flavonoids. RBH did not inhibit CCA proliferation, but strongly suppressed migration, invasion, adhesion of CCA cells, and the formation of tube-like capillary structures of human umbilical vein endothelial cells. Moreover, RBH down-regulated phosphorylation of FAK, PI3K, and Akt, suppressed NF-κB nuclear translocation, decreased the expression of ICAM-1, vimentin and vascular endothelium growth factor (VEGF), and increased the expression of E-cadherin. Conclusions: RBH suppresses CCA cell migration and invasion and decreases expression of proteins involved in cancer metastasis. RBH is a potential food supplement for cancer prevention.