1.Extracellular Trap by Blood Cells: Clinical Implications
R. J. NIJA ; S. SANJU ; Neeraj SIDHARTHAN ; Ullas MONY
Tissue Engineering and Regenerative Medicine 2020;17(2):141-153
BACKGROUND:
Extracellular trap formation (ETosis) by various blood cells has been reported. This trap contains DNA, histones and granular proteins which can elicit an innate immune response by entrapping microorganisms. The trap thus formed has been reported to have an involvement in various pathogenic conditions as well. This review focusses on the trap formation by different blood cells, the immune response associated with trap formation and also its role in various clinical conditions.METHOD: An extensive literature survey on ETosis by blood cells from 2003 to 2019 has been done. After going through the literature throughly, in this review we focuses on the trap formation by different blood cell types such as neutrophils, macrophages, eosinophils, basophils, mast cells, plasmacytoid dentritic cells, and monocytes. The mechanism with which it releases trap, the immune response it elicits and ultimately its involvement in various pathogenic conditions are described here. This article extensively covered all the above aspects and finally comprehends in nutshell the various stimuli that are currently known in trigerring the ETosis, its effect and ultimately its role in disease process.
RESULTS:
A clarity about the extracellular trap formation by various blood cells, mechanism of ETosis, role of Etosis in microbial invasion and in various pathogenic situations by various blood cells have been described here.
CONCLUSION
The current understanding about the process of ETosis and its effects has been extensively described here. Along with lot of favourable outcomes, the process of ETosis will lead to lot of pathogenic situations including thrombosis, tumour metastasis and sepsis. Current understanding about ETosis is limited. Indepth understanding of ETosis may have great therapeutic potential in the diagnosis, guiding of therapy and prognostication in various pathogenic situations including infectious conditions, autoimmune disorders and tumors.
2.Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies
Siva Sankari SHARATH ; Janarthanan RAMU ; Shantikumar Vasudevan NAIR ; Subramaniya IYER ; Ullas MONY ; Jayakumar RANGASAMY
Tissue Engineering and Regenerative Medicine 2020;17(2):123-140
Background:
Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance.
Methods:
Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue.
Results:
Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives.
Conclusion
In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.