1.Cloning of Xenopus laevis TRPV2 by Gene Prediction.
Jung Youn LEE ; Won Sik SHIM ; Uhtaek OH
Genomics & Informatics 2005;3(1):24-29
TRPV2 is a non-specific cation channel expressed in sensory neurons, and activated by noxious heat. Particularly, TRPV2 has six transmembrane domains and three ankyrin repeats. TRPV2 has been cloned from various species such as human, rat, and mouse. Oocytes of Xenopus laevis - an African clawed frog - have been widely used for decades in characterization of various receptors and ion channels. The functional property of rat TRPV2 was also identified by this oocyte expression system. However, no TRPV2 orthologue of Xenopus laevis has been reported so far. Hence, we have focused to clone a TRPV2 orthologue of Xenopus laevis with the aid of bioinformatic tools. Because the genome sequence of Xenopus laevis is not available until now, a genome sequence of Xenopus tropicalis - a close relative species of Xenopus laevis - was used. After a number of bioinformatic searches in silico, a predicted full-length sequence of TRPV2 orthologue of Xenopus tropicalis was found. Based on this predicted sequence, various approaches such as RT-PCR and 5'-RACE technique were applied to clone a full length of Xenopus laevis TRV2. Consequently, a full-length Xenopus laevis TRPV2 was cloned from heart cDNA.
Animals
;
Ankyrin Repeat
;
Clone Cells*
;
Cloning, Organism*
;
Computer Simulation
;
DNA, Complementary
;
Genome
;
Heart
;
Hoof and Claw
;
Hot Temperature
;
Humans
;
Ion Channels
;
Mice
;
Oocytes
;
Rats
;
Sensory Receptor Cells
;
Xenopus laevis*
;
Xenopus*
2.EF-hand like Region in the N-terminus of Anoctamin 1 Modulates Channel Activity by Ca²⁺ and Voltage
Min Ho TAK ; Yongwoo JANG ; Woo Sung SON ; Young Duk YANG ; Uhtaek OH
Experimental Neurobiology 2019;28(6):658-669
Anoctamin1 (ANO1) also known as TMEM16A is a transmembrane protein that functions as a Ca²⁺ activated chloride channel. Recently, the structure determination of a fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase by X-ray crystallography and a mouse ANO1 by cryo-electron microscopy has provided the insight in molecular architecture underlying phospholipid scrambling and Ca²⁺ binding. Because the Ca²⁺ binding motif is embedded inside channel protein according to defined structure, it is still unclear how intracellular Ca²⁺ moves to its deep binding pocket effectively. Here we show that EF-hand like region containing multiple acidic amino acids at the N-terminus of ANO1 is a putative site regulating the activity of ANO1 by Ca²⁺ and voltage. The EF-hand like region of ANO1 is highly homologous to the canonical EF hand loop in calmodulin that contains acidic residues in key Ca²⁺-coordinating positions in the canonical EF hand. Indeed, deletion and Ala-substituted mutation of this region resulted in a significant reduction in the response to Ca²⁺ and changes in its key biophysical properties evoked by voltage pulses. Furthermore, only ANO1 and ANO2, and not the other TMEM16 isoforms, contain the EF-hand like region and are activated by Ca²⁺. Moreover, the molecular modeling analysis supports that EF-hand like region could play a key role during Ca²⁺ transfer. Therefore, these findings suggest that EF-hand like region in ANO1 coordinates with Ca²⁺ and modulate the activation by Ca²⁺ and voltage.
Amino Acids, Acidic
;
Animals
;
Calcium
;
Calmodulin
;
Chloride Channels
;
Cryoelectron Microscopy
;
Crystallography, X-Ray
;
EF Hand Motifs
;
Mice
;
Models, Molecular
;
Mutagenesis
;
Nectria
;
Protein Isoforms