1.Modulation of the Transcriptional Activity of Peroxisome Proliferator-Activated Receptor Gamma by Protein-Protein Interactions and Post-Translational Modifications.
Tae Hyun KIM ; Mi Young KIM ; Seong Ho JO ; Joo Man PARK ; Yong Ho AHN
Yonsei Medical Journal 2013;54(3):545-559
Peroxisome proliferator-activated receptor gamma (PPARgamma) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARgamma, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARgamma is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARgamma in body homeostasis. The transcriptional activity of PPARgamma is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARgamma with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARgamma. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARgamma, both of which affect its transcriptional activities in relation to adipogenesis.
Gene Expression Regulation
;
Homeostasis
;
*Models, Genetic
;
PPAR gamma/genetics/metabolism/*physiology
;
*Protein Processing, Post-Translational
;
Sumoylation
;
Transcription Factors/metabolism/physiology
;
Ubiquitination
2.Sumoylation of Hes6 Regulates Protein Degradation and Hes1-Mediated Transcription.
Jiwon LEE ; Sung Kook CHUN ; Gi Hoon SON ; Kyungjin KIM
Endocrinology and Metabolism 2015;30(3):381-388
BACKGROUND: Hes6 is a transcriptional regulator that induces transcriptional activation by binding to transcription repressor Hes1 and suppressing its activity. Hes6 is controlled by the ubiquitin-proteosome-mediated degradation system. Here we investigated the sumoylation of Hes6 and its functional role in its rhythmic expression. METHODS: Hes6, SUMO, and ubiquitin were transfected into HeLa cells and the expression pattern was observed by Western blot and immunoprecipitation. To confirm the effect of sumoylation on the rhythmic expression of Hes6, we generated mouse Hes6 promoter-driven GFP-Hes6 fusion constructs and expressed these constructs in NIH 3T3 cells. RESULTS: Overexpression of SUMO led to sumoylation of Hes6 at both lysine 27 and 30. Protein stability of Hes6 was decreased by sumoylation. Moreover, expression of a Hes6 sumoylation-defective mutant, the 2KR (K27/30R) mutant, or co-expression of SUMO protease SUSP1 with native Hes6, strongly reduced ubiquitination. In addition, sumoylation was associated with both the rhythmic expression and transcriptional regulation of Hes6. Wild type Hes6 showed oscillatory expression with about 2-hour periodicity, whereas the 2KR mutant displayed a longer period. Furthermore, sumoylation of Hes6 derepressed Hes1-induced transcriptional repression. CONCLUSION: Hes6 sumoylation plays an important role in the regulation of its stability and Hes1-mediated transcription. These results suggest that sumoylation may be crucial for rhythmic expression of Hes6 and downstream target genes.
Animals
;
Blotting, Western
;
HeLa Cells
;
Humans
;
Immunoprecipitation
;
Lysine
;
Mice
;
NIH 3T3 Cells
;
Periodicity
;
Protein Stability
;
Proteolysis*
;
Repression, Psychology
;
Sumoylation*
;
Transcriptional Activation
;
Ubiquitin
;
Ubiquitination
3.Progress in ubiquitin, ubiquitin chain and protein ubiquitination.
Qiuyan LAN ; Yuan GAO ; Yanchang LI ; Xuechuan HONG ; Ping XU
Chinese Journal of Biotechnology 2016;32(1):14-30
Protein ubiquitination is one of the most important and widely exist protein post-translational modifications in eukaryotic cells, which takes the ubiquitin and ubiquitin chains as signal molecules to covalently modify other protein substrates. It plays an important roles in the control of almost all of the life processes, including gene transcription and translation, signal transduction and cell-cycle progression, besides classical 26S protesome degradation pathway. Varied modification sites in the same substrates as well as different types of ubiquitin linkages in the same modification sites contain different structural information, which conduct different signal or even determine the fate of the protein substrates in the cell. Any abnormalities in ubiquitin chain formation or its modification process may cause severe problem in maintaining the balance of intracellular environment and finally result in serious health problem of human being. In this review, we discussed the discovery, genetic characteristics and the crystal structure of the ubiquitin. We also emphasized the recent progresses of the assembly processes, structure and their biological function of ubiquitin chains. The relationship between the disregulation and related human diseases has also been discussed. These progress will shed light on the complexity of proteome, which may also provide tools in the new drug research and development processes.
Humans
;
Proteome
;
Ubiquitin
;
chemistry
;
Ubiquitination
4.An Immunohistochemical Study on the Expression of SUMO-2/3 in the Colorectal Carcinoma.
Joo Hyun HAM ; Jung PARK ; Doo San PARK ; Sung Su LEE ; Seung Ha YANG ; Dongjun JEONG
Soonchunhyang Medical Science 2012;18(2):95-101
OBJECTIVE: The incidence of colorectal carcinomas continues to rise in Korea due to the westernized life style. However, the precise colorectal carcinogenic mechanisms remain to be elucidated. The protein products of oncogenes and cancer suppressor genes play important roles in the carcinogenesis. The effects of the proteins are influenced by post-translational modifications as phosphorylation, acetylation, methylation, and ubiquitination. The aberrant sumoylation plays some roles in carcinogenesis. However, the expression pattern of small ubiquitin-related modifier (SUMO)-2/3 in the colorectal cancer has not been reported. We assessed the expression of SUMO-2/3 and evaluated the expression pattern in colorectal cancer. METHODS: The SUMO-2/3 expression was tested in one normal colon mucosal cell line and 5 colorectal cancer cell lines by Western blot. We collected 322 cases of colorectal cancer operated from January 2000 to December 2010 at Soonchunhyang University Cheonan Hospital. We fabricated the tissue microarray and the expression of SUMO-2/3 was evaluated by immunohistochemistry. The results were analyzed with clinicopathologic parameters. RESULTS: The SUMO-2/3 was not expressed in the normal colon mucosal cell line. However, it was expressed highly in all the 5 colorectal cancer cell lines as the beta-actin. The SUMO-2/3 was expressed in 68.3% of the colorectal cancers and its expression was correlated with the pathological tumor stage stage (odds ratio, 2.89; 95% confidence interval, 1.10 to 7.55; P=0.031). CONCLUSION: The SUMO-2/3 plays some roles in carcinogenesis and progression of the colorectal cancer.
Acetylation
;
Actins
;
Blotting, Western
;
Cell Line
;
Colon
;
Colorectal Neoplasms
;
Genes, Tumor Suppressor
;
Immunohistochemistry
;
Incidence
;
Korea
;
Life Style
;
Methylation
;
Oncogenes
;
Phosphorylation
;
Protein Processing, Post-Translational
;
Proteins
;
Sumoylation
;
Tissue Array Analysis
;
Ubiquitin
;
Ubiquitination
5.Advances on BTB protein ubiquitination mediated plant development and stress response.
Tongtong LÜ ; Wenhui YAN ; Yan LIANG ; Yin DING ; Qingxia YAN ; Jinhua LI
Chinese Journal of Biotechnology 2024;40(1):63-80
The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.
Eukaryota
;
Plant Development/genetics*
;
Proteolysis
;
Ubiquitination
6.Herpesvirus-encoded Deubiquitinating Proteases and Their Roles in Regulating Immune Signaling Pathways.
Journal of Bacteriology and Virology 2013;43(4):244-252
Viruses interact with the host ubiquitination system in a variety of ways. Viral proteins are often a substrate for ubiquitination, which leads to proteasomal degradation. Viruses also have functions to modify the cellular ubiquitination machinery. Recently, deubiquitinating protease (DUB) activity has been found in many viral proteins. In herpesviruses, the DUB domain is found within the large tegument protein, which is conserved in all members of the herpesvirus family. Although a limited number of viral and cellular targets have been identified to date, accumulating evidence shows that herpesviral DUBs may primarily target key cellular regulators of immune signaling pathways to promote viral replication. In this review, we summarize the recent findings on viral DUBs. In particular, we focus on the herpesviral DUBs and their targets, and discuss their potential roles in the regulation of immune signaling pathways.
Herpesviridae
;
Humans
;
Peptide Hydrolases*
;
Ubiquitin
;
Ubiquitination
;
Viral Proteins
7.Ubiquitous Ribonucleic Acid:miRNA is the Ubiquitin of RNA.
Acta Academiae Medicinae Sinicae 2015;37(5):607-611
Small RNAs, especially microRNAs (miRNAs),widely exist in eukaryotic cells, with their main functions being regulating gene expression and function of target molecules through the degradation of cellular target RNAs by the ribonuclease-based system. Ubiquitins and ubiquitin-like proteins are polypeptides that exist in most eukaryotic cells, and their main function is almost to regulate protein level through the degradation of cellular proteins by ubiquitin proteasome system. Small RNAs, including miRNAs,and ubiquitins or ubiquitin-like proteins have similarities in many aspects although small RNAs and ubiquitin or ubiquitin-like proteins interact different substrates respectively. Therefore, miRNAs can be defined as ubiquitra (ubiquitous ribonucleic acid, ubiquitra or uRNA), and the other small RNAs can be defined as ubiquitra-like RNA or uRNA-like RNA. The concept of ubiquitra may be applied for explaining the biological essence of small RNAs diversity.
Gene Expression
;
MicroRNAs
;
Proteasome Endopeptidase Complex
;
Proteins
;
Ubiquitination
8.Non-autophagic degradation roles of autophagy receptors.
Da-wei WANG ; Bin ZHANG ; Bin LÜ ; Guang-xin WANG
Acta Pharmaceutica Sinica 2016;51(1):1-8
A growing body of evidence has indicated the important role of autophagy receptors in directing ubiquitinated or non-ubiquitinated cargos towards autophagy. Autophagy receptors bind to LC3 (microtubule-associated protein 1 light chain 3) on phagophore and autophagosome membranes, and recognize signals on cargoes in the delivery system of autophagy. However, the diverse domains in the receptor structures determine that their roles would never be limited to autophagy. Up to date, increasing numbers of the receptor proteins have been demonstrated to serve as a molecular link or switch participating in autophagic degradation, apoptosis or cell survival signals. Here, we highlight the non-autophagic roles of these receptor proteins to draw attention to this growing research topic.
Apoptosis
;
Autophagy
;
Humans
;
Microtubule-Associated Proteins
;
physiology
;
Signal Transduction
;
Ubiquitination
9.Effect of key enzymes ubiquitination sites on the biosynthesis of naringenin.
Mingjia LI ; Jingwen ZHOU ; Jianghua LI
Chinese Journal of Biotechnology 2022;38(2):691-704
Flavonoids have a variety of biological activities and have important applications in food, medicine, cosmetics, and many other fields. Naringenin is a platform chemical for the biosynthesis of many important flavonoids. Ubiquitination plays a pivotal role in the post-translational modification of proteins and participates in the regulation of cellular activities. Ubiquitinated proteins can be degraded by the ubiquitin-protease system, which is important for maintaining the physiological activities of cells, and may also exert a significant impact on the expression of exogenous proteins. In this study, a real-time in-situ detection system for ubiquitination modification has been established in Saccharomyces cerevisiae by using a fluorescence bimolecular complementation approach. The ubiquitination level of protein was characterized by fluorescence intensity. By using the approach, the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway have been obtained. The lysine residues of the relevant ubiquitination sites were mutated to arginine to reduce the ubiquitination level. The mutants of tyrosine ammonia-lyase (FjTAL) and chalcone synthase (SjCHS, SmCHS) showed decreased fluorescence, suggested that a decreased ubiquitination level. After fermentation verification, the S. cerevisiae expressing tyrosine ammonia-lyase FjTAL mutant FjTAL-K487R accumulated 74.2 mg/L p-coumaric acid at 72 h, which was 32.3% higher than that of the original FjTAL. The strains expressing chalcone synthase mutants showed no significant change in the titer of naringenin. The results showed that mutation of the potential ubiquitination sites of proteins involved in the naringenin biosynthesis pathway could increase the titer of p-coumaric acid and have positive effect on naringenin biosynthesis.
Biosynthetic Pathways
;
Flavanones/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Ubiquitination
10.Progress in atypical ubiquitination via K6-linkages.
Yonghong WANG ; Shuai HUANG ; Ping XU ; Yanchang LI
Chinese Journal of Biotechnology 2022;38(9):3215-3227
Ubiquitination is a post-translational modification of proteins in eukaryotes, which mediates the specific degradation and signal transduction of proteins to regulate a variety of life processes and thus affects functions of the body. The disorder and imbalance of ubiquitination network is a major cause of serious human diseases. Ubiquitin molecules can form eight homogeneous ubiquitin chains with different topological structures, which vary greatly in abundance and function. At present, the classical ubiquitin chains K48 and K63 with high abundance and rich substrates have been intensively studied, while other atypical ubiquitin chains with low content remain to be studied. However, it has been proved that atypical ubiquitin chains play a key role in intracellular regulation. K6 is an important atypical ubiquitin chain, which is similar to K48 chain and has a tight spatial structure. It plays a role in DNA damage repair, mitochondrial quality control, the occurrence and development of tumor, and the pathogenesis of Parkinson's disease. Due to the lack of specific antibodies and effective enrichment methods for K6, little is known about its substrate and regulatory mechanism. This paper systematically reviews the structural characteristics, regulatory mechanism, biological functions, and relevant diseases of atypical K6 linkages, aiming to provide reference for the functional study of K6.
Humans
;
Protein Processing, Post-Translational
;
Signal Transduction
;
Ubiquitin/chemistry*
;
Ubiquitination