1.Enhanced cellulase production of Penicillium decumbens by knocking out CreB encoding a deubiquitination enzyme.
Guangqi ZHOU ; Jing LÜ ; Zhonghai LI ; Jingjing LI ; Mingyu WANG ; Yinbo QU ; Lin XIAO ; Shulin QIN ; Haitao ZHAO ; Ruirui XIA ; Xu FANG
Chinese Journal of Biotechnology 2012;28(8):959-972
Penicillium decumbens T. is an important filamentous fungus for the production of cellulases to effectively degrade lignocellulose for second generation biofuel production. In order to enhance the capability of Penicillium decumbens to produce cellulases, we constructed a creB (a deubiquitinating enzyme encoding gene) deletion cassette, and generated a creB knockout strain with homologous double crossover recombination. This mutation resulted in a detectable decrease of carbon catabolite repression (CCR) effect. The filter paper activity, endoglucanase activity, xylanase activity and exoglucanase activity of the deltacreB strain increased by 1.8, 1.71, 2.06 and 2.04 fold, respectively, when comparing with the parent strain Ku-39. A 2.68 fold increase of extracellular protein concentration was also observed. These results suggest that the deletion of creB results in CCR derepression. These data also suggest that CREB influences cellulase production of Penicillium decumbens. In generation, this study provides information that can be helpful for constructing cellulase hyper-producing strain.
Cellulase
;
biosynthesis
;
Endopeptidases
;
genetics
;
metabolism
;
Gene Knockout Techniques
;
Lignin
;
metabolism
;
Mutant Proteins
;
metabolism
;
Penicillium
;
enzymology
;
genetics
;
Recombination, Genetic
;
Ubiquitinated Proteins
;
genetics
;
Ubiquitination
2.Glucosamine induces cell death via proteasome inhibition in human ALVA41 prostate cancer cell.
Bao Qin LIU ; Xin MENG ; Chao LI ; Yan Yan GAO ; Ning LI ; Xiao Fang NIU ; Yifu GUAN ; Hua Qin WANG
Experimental & Molecular Medicine 2011;43(9):487-493
Glucosamine, a naturally occurring amino monosaccharide, has been reported to play a role in the regulation of apoptosis more than half century. However the effect of glucosamine on tumor cells and the involved molecular mechanisms have not been thoroughly investigated. Glucosamine enters the hexosamine biosynthetic pathway (HBP) downstream of the rate-limiting step catalyzed by the GFAT (glutamine:fluctose-6-phosphate amidotransferase), providing UDP-GlcNAc substrates for O-linked beta-N-acetylglucosamine (O-GlcNAc) protein modification. Considering that O-GlcNAc modification of proteasome subunits inhibits its activity, we examined whether glucosamine induces growth inhibition via affecting proteasomal activity. In the present study, we found glucosamine inhibited proteasomal activity and the proliferation of ALVA41 prostate cancer cells. The inhibition of proteasomal activity results in the accumulation of ubiquitinated proteins, followed by induction of apoptosis. In addition, we demonstrated that glucosamine downregulated proteasome activator PA28gamma and overexpression of PA28gamma rescued the proteasomal activity and growth inhibition mediated by glucosamine. We further demonstrated that inhibition of O-GlcNAc abrogated PA28gamma suppression induced by glucosamine. These findings suggest that glucosamine may inhibit growth of ALVA41 cancer cells through downregulation of PA28gamma and inhibition of proteasomal activity via O-GlcNAc modification.
Acetylglucosamine/chemistry/metabolism
;
Alloxan/pharmacology
;
Apoptosis/*drug effects
;
Autoantigens/genetics/*metabolism
;
Cell Line, Tumor
;
Cell Proliferation/*drug effects
;
Gene Expression Regulation, Neoplastic
;
Glucosamine/*pharmacology
;
Humans
;
Male
;
Phosphorylation
;
Prostatic Neoplasms/*enzymology
;
Proteasome Endopeptidase Complex/*antagonists & inhibitors/genetics/metabolism
;
RNA, Small Interfering/genetics
;
Ubiquitinated Proteins/metabolism