2.Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control.
Youjin JUNG ; Hag Dong KIM ; Hee Woong YANG ; Hye Jin KIM ; Chang Young JANG ; Joon KIM
Experimental & Molecular Medicine 2017;49(11):e390-
When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.
Autophagy
;
Eukaryota
;
Quality Control*
;
Ribosomes
;
Ubiquitin
;
Ubiquitin-Protein Ligases*
;
Ubiquitin-Specific Proteases
;
Ubiquitination
;
Yeasts
3.Progress in the effects of BRAP gene on cardiovascular diseases.
Journal of Zhejiang University. Medical sciences 2014;43(5):602-606
BRAP (BRCA1 associated protein) is one of BRCA1 (Breast cancer suppressor protein) associated cytoplasmic proteins. BRAP gene has been found to be associated with the risk of some cancers, and the associations between BRAP and cardiovascular diseases and metabolic syndrome is gradually attracting much attention. However, the explicit mechanisms involved remain to be fully elucidated. We reviewed the association between BRAP gene and cardiovascular diseases and metabolic syndromes and the biologic mechanisms in the regulation of metabolism, hoping to provide clues on our future researches.
Cardiovascular Diseases
;
genetics
;
Humans
;
Ubiquitin-Protein Ligases
;
genetics
5.The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi.
Mycobiology 2011;39(4):243-248
The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.
Cryptococcus neoformans
;
F-Box Proteins
;
Fungi
;
Humans
;
Ligases
;
Proteasome Endopeptidase Complex
;
Saccharomyces cerevisiae
;
Substrate Specificity
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
Yeasts
6.Advances in the research of mechanism of protein ubiquitination in wound healing.
Chinese Journal of Burns 2016;32(2):119-121
Ubiquitin, a critical small molecular protein, plays an important role in regulating multiple signaling pathways. Ubiquitination is a post-translational modification induced by ubiquitin through an ATP-dependent enzyme catalyzed reaction. A large number of proteins in the complicated signaling network participate in wound healing. This paper reviews the research progress in regulation of ubiquitin and ubiquitination for wound healing processes regarding the recent years.
Signal Transduction
;
physiology
;
Ubiquitin
;
metabolism
;
Ubiquitin-Protein Ligases
;
physiology
;
Ubiquitination
;
Wound Healing
;
physiology
7.The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer
Journal of Cancer Prevention 2018;23(4):162-169
TGF-β signaling plays a tumor suppressive role in normal and premalignant cells but promotes tumor progression during the late stages of tumor development. The TGF-β signaling pathway is tightly regulated at various levels, including transcriptional and post-translational mechanisms. Ubiquitination of signaling components, such as receptors and Smad proteins is one of the key regulatory mechanisms of TGF-β signaling. Tripartite motif (TRIM) family of proteins is a highly conserved group of E3 ubiquitin ligase proteins that have been implicated in a variety of cellular functions, including cell growth, differentiation, immune response, and carcinogenesis. Recent emerging studies have shown that some TRIM family proteins function as important regulators in tumor initiation and progression. This review summarizes current knowledge of TRIM family proteins regulating the TGF-β signaling pathway with relevance to cancer.
Carcinogenesis
;
Humans
;
Smad Proteins
;
Transforming Growth Factor beta
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
Ubiquitination
8.Pja2 Inhibits Wnt/β-catenin Signaling by Reducing the Level of TCF/LEF1
Yonghee SONG ; Somyung LEE ; Jeong Rae KIM ; Eek hoon JHO
International Journal of Stem Cells 2018;11(2):242-247
Ubiquitination of proteins plays an essential role in various cellular processes, including protein degradation, DNA repair, and cell signaling pathways. Previous studies have shown that protein ubiquitination is implicated in regulating pluripotency as well as fate determination of stem cells. To identify how protein ubiquitination affects differentiation of embryonic stem cells, we analyzed microarray data, which are available in the public domain, of E3 ligases and deubiquitinases whose levels changed during stem cell differentiation. Expression of pja2, a member of the RING-type E3 ligase family, was up-regulated during differentiation of stem cells. Wnt/β-catenin signaling is one of the most important signaling pathways for regulation of the self-renewal and differentiation of embryonic stem cells. Pja2 was shown to bind to TCF/LEF1, which are transcriptional factors for Wnt/β-catenin signaling, and regulate protein levels by ubiquitination, leading to down-regulation of Wnt signaling activity. Based on these results, we suggest that E3 ligase Pja2 regulates stem cell differentiation by controlling the level of TCF/LEF1 by ubiquitination.
DNA Repair
;
Down-Regulation
;
Embryonic Stem Cells
;
Humans
;
Ligases
;
Proteolysis
;
Public Sector
;
Stem Cells
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
Ubiquitin-Specific Proteases
;
Ubiquitination
9.Functions of carboxyl-terminus of Hsc70 interacting protein and its role in neurodegenerative disease.
Wei-qian YAN ; Jun-ling WANG ; Bei-sha TANG
Chinese Journal of Medical Genetics 2012;29(4):426-430
Neurodegenerative diseases are a group of chronic progressive neuronal damage disorders. The cause is unclear, most of them share a same pathological hallmark with misfold proteins accumulating in neurons. Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a dual functional molecule, which has a N terminal tetratrico peptide repeat (TPR) domain that interacts with Hsc/Hsp70 complex and Hsp90 enabling CHIP to modulate the aberrant protein folding; and a C terminal U-box ubiquitin ligase domain that binds to the 26S subunit of the proteasome involved in protein degradation via ubiqutin-proteasome system. CHIP protein mediates interactions between the chaperone system and the ubiquitin-proteasome system, and plays an important role in maintaining the protein homeostasis in cells. This article reviews the molecular characteristics and physiological functions of CHIP, and its role in cellular metabolism and discusses the relationship between CHIP dysfunction and neurodegenerative diseases.
Animals
;
Humans
;
Neurodegenerative Diseases
;
genetics
;
metabolism
;
Protein Binding
;
Protein Folding
;
Proteolysis
;
Ubiquitin-Protein Ligases
;
genetics
;
metabolism
10.Point mutation in the parkin gene on patients with Parkinson's disease.
Tao, WANG ; Zhihou, LIANG ; Shenggang, SUN ; Xuebing, CAO ; Hai, PENG ; Fei, CAO ; Hongjin, LIU ; E-tang, TONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2003;23(2):145-7
To investigate the distribution of possible novel mutations from parkin gene in variant subset of patients with Parkinson's disease (PD) in China and explore whether parkin gene plays an important role in the pathogenesis of PD, 70 patients were divided into early-onset group and late-onset group; 70 healthy subjects were included as controls. Genomic DNA from 70 normal controls and from those of PD patients were extracted from peripheral blood leukocytes by using standard procedures. Mutations of parkin gene (exon 1-12) in all the subjects were screened by PCR-single strand conformation polymorphism (SSCP), and further sequencing was performed in the samples with abnormal SSCP results, in order to confirm the mutation and its location. A new missense mutation Gly284Arg in a patient and 3 abnormal bands in SSCP electrophoresis from samples of another 3 patients were found. All the DNA variants were sourced from the samples of the patients with early-onset PD. It was concluded that Parkin point mutation also partially contributes to the development of early-onset Parkinson's disease in Chinese.
DNA Mutational Analysis
;
Exons
;
Genotype
;
Parkinson Disease/*genetics
;
*Point Mutation
;
Polymorphism, Single-Stranded Conformational
;
Ubiquitin-Protein Ligases/biosynthesis
;
Ubiquitin-Protein Ligases/*genetics